
Medical Image Analysis (8DC00)
Release v0.1

Daniel Krahulec

Sep 17, 2023

SOFTWARE GUIDE

1 Interactive notebooks 3
1.1 Help for Jupyter and Python . 3
1.2 Topic 1.1: Geometrical transformations . 10
1.3 Topic 1.2: Point-based registration . 26
1.4 Topic 1.3: Image similarity metrics . 35
1.5 Topic 1.4: Intensity-based registration . 43
1.6 Topic 1.5: Validation in medical image analysis . 49
1.7 Project 1: Image registration . 61
1.8 Topic 2.1: Linear regression . 69
1.9 Topic 2.2: Logistic regression . 77
1.10 Topic 2.3: Building blocks of neural networks . 82
1.11 Topic 2.4: Unsupervised learning, PCA . 94
1.12 Project 2: Computer-aided diagnosis . 111
1.13 Active shape models . 118

i

ii

Medical Image Analysis (8DC00), Release v0.1

Course website: https://github.com/tueimage/8dc00-mia
Virtual reader: https://8dc00-mia-docs.readthedocs.io/en/latest/

This course is a sequel to the second year introductory imaging course. In that course the basic principles of image
analysis were covered. In 8DC00 we will concentrate on the more advanced image analysis methods and how they can
be used to tackle clinical problems. Topics covered include image registration and computer-aided diagnosis (CAD).

SOFTWARE GUIDE 1

https://github.com/tueimage/8dc00-mia
https://8dc00-mia-docs.readthedocs.io/en/latest/

Medical Image Analysis (8DC00), Release v0.1

2 SOFTWARE GUIDE

CHAPTER

ONE

INTERACTIVE NOTEBOOKS

1.1 Help for Jupyter and Python

Read the following sections carefully before you start working on the notebooks.

The first part of this notebook provides an explanation of the fundamental steps for installing your Python distributor,
configuring your Python environment, and using basic Python commands. It will also give you important information
on how to debug your code in case something does not work as expected. The second part describes the general setup
of all notebooks, teaches you how to work with Jupyter and how to quickly and efficiently solve problems while doing
the exercises.

Contents:

1. Python programming skills

1.1 Python installation and configuration

1.2 Using Python terminal, setting up a Python environment

1.3 Implementation of basic engineering and mathematical techniques

1.4 How to efficiently search for solutions to Python errors

2. Jupyter notebook workflow

2.1 General information about notebooks

2.2 User interface and useful commands in Jupyter notebooks

2.3 Debugging and editing your Python code directly in Jupyter notebook

1.1.1 1 Python programming skills

In this course, we will be working with Anaconda (a Python distribution platform). The following instructions give an
overview of essential steps prior to using Jupyter notebooks on Windows.

3

Medical Image Analysis (8DC00), Release v0.1

1.1 Python installation and configuration

Here is how to install your Python distribution platform:

1. Download and install Anaconda (it automatically comes with the latest Python version)

2. Follow the instructions in the dialog window. Make sure to check the box Add Anaconda to my PATH envi-
ronment variable in order to be able to use Jupyter notebooks.

3. Installation will follow

4. To check whether the path to Anaconda has been added to your environment variables, go to Edit the system
environment variables in the start menu, and click the Environment Variables button in the dialogue window.

1.2 Using Python terminal, setting up a Python environment

To progress efficiently in this course, you will need to install additional Python packages that are not included in the
basic Anaconda Python distribution. It is recommended to install these packages in a dedicated Python environment.
A Conda environment is a directory in which you can install files and packages such that their dependencies will not
interact with other environments, which is very useful if you develop code for different courses or research projects.
These packages can either be installed using a conda .yml file or manually using the conda and/or pip package man-
agers. To run the complete development environment for this course, you need to install six additional Python packages:
jupyter, matplotlib, numpy, scikit-learn, scipy and spyder (spyder is optional).

1. Open the Anaconda terminal from the Start menu on Windows

2. Create a conda environment: In (Anaconda) command prompt, write conda create --name myenv (to create
an environment with a specific Python version, specify the version at the end of this command line python=3.
8; and to add specific packages to the environment, specify them afterwards in the same command line, e.g.
conda create -n myenv python=3.8 scipy=0.15.0 numpy nibabel). Check the requirements file for
the package versions you need to install.

Here is an example you can follow for this course:

conda create --name 8dc00 python=3.8 # create a new environment␣
→˓called `8dc00`
conda activate 8dc00 # activate this environment
conda install matplotlib jupyter numpy scikit-learn scipy # install the required␣
→˓packages

Using both ways, the default destination folder for your newly created Python environment will be in C:\
path-to-anaconda\envs\myenv. Note! You have to activate the 8dc00 environment every time you start working
on the assignments (conda activate 8dc00).

1.3 Implementation of basic engineering and mathematical techniques

Best way to learn the basics of programming is to study Python essentials in the Essential Skills notebook of the
course. Additionally, a comprehensive reference book with examples on applying mathematical models as well as
machine learning in Python can be found in the book Python for Science and Engineering by Hans-Peter Halvorsen.

4 Chapter 1. Interactive notebooks

https://www.anaconda.com/products/individual
https://github.com/tueimage/8dc00-mia/blob/master/requirements.txt
https://github.com/tueimage/essential-skills/blob/master/python-essentials.md
https://www.halvorsen.blog/documents/programming/python/resources/Python%20for%20Science%20and%20Engineering.pdf

Medical Image Analysis (8DC00), Release v0.1

1.4 How to efficiently search for solutions to Python errors

Code bugs, glitches and unexpected behavior occur frequently whenever you develop code snippets, test your imple-
mentation or integrate your solution into someone else’s code. What is usually time-consuming and demotivating for
students, is searching for solutions to Python errors that may show an utterly confusing explanation on the screen. You
copy the error text, open your browser, paste it, and a long list of sometimes completely unrelated solutions is thrown
in front of you. Yes, this can be very frustrating.

The good news is that errors in Python have a very specific form, called a traceback. Though intimidating at times,
tracebacks inform you broadly about what went wrong in your program, including indication of the line of code where
the error ocurred and what type of error it was. Tracebacks may have multiple levels (reaching up to 20 levels deep!),
which results in long error messages. Note however, that the length of these error statements does not reflect the severity
of the problem as the messages contain all functions that were called upon before the error was encountered. You will
typically find the error at the bottom of the traceback messages. Most commonly seen tracebacks include:

• SyntaxError (describes a “grammar” issue related to the syntax of the program)

• IndentationError (is related to how your code is indented)

• NameError (shows up when a variable definition is missing, does not exist, or its name is misspelt)

• IndexError (Python indexing starts at 0; this error occurs when you try to wrongly access list or array elements)

• FileNotFoundError (occurs when the file you aim to read is not found in the given destination on your disk)

• IOError (appears when you are trying to read a file that is open for writing or vice versa)

You may find examples of traceback errors on this educational website on errors and exceptions in Python.

Sometimes you are referred to the documentation pages of a certain library, where it is clearly described how to use a
function, and how to fill in its mandatory input parameters. Check for example the numpy documentation to understand
the structure of documenting Python libraries. Apart from documentation resources, probably the most comprehensive
repository of various hacks, solutions, workarounds and tips for programmers can be found on Stack Overflow, where
enthusiastic programmers post solutions to miscellaneous problems and glitches found in codes of users from all around
the globe. If you still cannot find your solution, post your question on Stack Overflow, and an answer will be available
for you soon.

Although Google is a friendly debugging assistant (and some programmers have learnt a programming language on a
simple trial-error basis), prevention in programming is key to obtaining a functional code. General advice is to program
defensively, i.e. assume errors will arise and write test code first to detect problems in an early stage. Small tests with
pre- and postconditions will help you determine what the code is supposed to eventually do.

1.1.2 2. Jupyter notebook workflow

2.1 General information about notebooks

Getting started with Jupyter

We recommend using Jupyter Notebook to follow the exercises and run the example code (also see the Essential Skills
module). An alternative is Jupyter Lab which has a bit more advanced functionality that some might find useful. It is
best if you change the directory to the directory containing the code before starting Jupyter Notebook. Similarly, you
can start the integrated development environment Spyder by typing spyder in the Anaconda Prompt.

To open a Jupyter notebook editor, you have several options:

1. Open Anaconda Navigator (may take some time to open), and launch Jupyter

2. Open a Windows command prompt / Windows Powershell, and type jupyter notebook (note the space in
between); this way will only work if you have added Anaconda to your Path

1.1. Help for Jupyter and Python 5

https://swcarpentry.github.io/python-novice-inflammation/09-errors/index.html
https://numpy.org/doc/
https://stackoverflow.com/
https://github.com/tueimage/essential-skills
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

Medical Image Analysis (8DC00), Release v0.1

Digital reader

For a quicker view of all Jupyter noteboooks you will be working on in this course, we have prepared an online reader
8DC00-website, which gives you the option to study the notebooks before opening them locally in your Jupyter envi-
ronment. The reader also allows for an easy access to study all notebooks without the need for launching any interactive
environment. This will especially be useful in your preparation for the final exam.

Code and data repository structure

To get started, you have to save the course’s GitHub repository to your local machine (either as a ZIP archive or by
running the command git clone <link_to_repository>), say into a folder named 8DC00 on your machine. Once
downloaded or cloned, you will see the following folder and file structure:

8DC00
.
|____code
| |____registration.py
| |____registration_tests.py
| |____registration_util.py
| |____registration_project.py
| |____...
|____data
|____reader
| |____0.1_Software_guide.ipynb
| |____1.1_Geometrical_transformations.ipynb
| |____1.2_Point-based_registration.ipynb
| |____...
|____README.md
|____requirements.txt

The code for this course is organised in Python modules per topic (e.g. registration.py) stored in the code folder,
each containing the Python functions (either complete or to be completed by you) particular to the topic of the exercise.
These modules are referred to from the relevant Jupyter notebooks.

The testing functions (e.g. registration_tests.py) can be used validate the code that you developed. These
functions are often already called from within the Jupyter notebooks, although some of these tests might fail if they do
not yet contain completed code. Helper functions are provided in modules ending with _util.py.

The Jupter notebooks in the reader folder contain all exercise and project instructions, mostly structured according
to a narrative interspersed with code snippets and example figures. The README provides the order (with links) in
which the exercises can be followed.

Finally, the data folder contains all of the data necessary to complete the exercises and projects. Hardcoded filenames
in the _tests.pymodules are referenced to the 8DC00 folder. You might have to change these filenames if you program
and run your code from outside the notebooks.

6 Chapter 1. Interactive notebooks

https://8dc00-mia-docs.readthedocs.io/en/latest/
https://github.com/tueimage/8dc00-mia/blob/master/README.md

Medical Image Analysis (8DC00), Release v0.1

Exercises on image registration

In this set of exercises, you will first implement Python definitions for computing transformation matrices for different
geometrical transformations. Then, you will implement code for converting a transformation matrix into a homoge-
neous form. All information needed for implementing these functions can be found in corresponding lecture slides
and/or previous parts of this notebook. In the beginning, you will apply the transformations to geometric objects,
however, the same functions will be later used for image transformation.

Exercises on computer-aided diagnostics and neural networks

In this set of exercises, you will implement linear regression and logistic regression methods, apply them to simplistic
datasets and then evaluate and analyze the results. As with the other sets of exercises, the goal is to help you better
study and understand the material and lay down the ground work for the corresponding mini-project. You should not
wait to complete all exercises before moving to work on the project. For example, after completing the exercises on
linear regression, you can already start with the linear regression experiments required for the project work.

Notation

Vectors and matrices are represented by a bold typeface, matrices with uppercase and vectors with lowercase letters,
e.g. the matrix X, the vector w etc. Compare this with the notation for scalars: 𝑋 , 𝑤. In-line Python function
(i.e. definition) names, commands, files and variables are represented in a highlighted monospace font, e.g. X, w,
imshow(I), some_python_definition(), some_file.py etc.

Activity icons

To help you understand what is expected from you in different parts of the notebooks, we have incorporated the following
activity icons (top-down: STUDY, IMPLEMENT/TEST, ANSWER):

2.2 User interface and useful commands in Jupyter notebooks

Jupyter notebooks is an interactive computing environment. There is a comprehensive documentation describing the
Notebook Basics, where you can learn about what happens when you first start the Jupyter notebook server and the
dashboard appears in front of you. When working with the notebooks in this course, you will see the User Interface
which allows you to run code, work on exercises and answer questions interactively. Instead of using the UI buttons
and interactive tools, you may prefer to use keyboard commands optimized for efficient work with the notebooks. Here
are a couple of most useful commands you may find useful in this course:

• Basic navigation: Enter (enter edit mode), Esc (enter command mode), Shift-Enter (confirm editing)

• Saving notebooks: s (save)

• Change cell types: m (markdown), y (code)

1.1. Help for Jupyter and Python 7

https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/ui_components.html

Medical Image Analysis (8DC00), Release v0.1

• Cell creation: a (add cell above), b (add cell below)

• Cell editing: c (copy cell), v (paste cell), d, d (delete cell), z (undo deletion), x (cut cell)

Note! It may well be that you cannot view Jupyter notebooks on the GitHub webpage correctly. Therefore, it is essential
that you clone the GitHub repository to your local folder (free to choose by yourself), and work locally.

2.3 Debugging and editing your Python code directly in Jupyter notebook

Editing code directly in Jupyter, which offers no linking, auto-complete or other comforts of a decent editor, might
sometimes be difficult. There are several open-source Integrated Development Environments (IDEs) enabling fast and
efficient software development, code editing and debugging. Examples of these tools are PyCharm, MS Visual Studio
Code or Sublime Text, to name some. On the bright side, such code editors offer miscellaneous utilities, such as auto-
complete, suggestions for code enhancements, automatic installation of missing Python libraries, etc. While all these
features make it much easier to develop your functionalities, setting up an IDE might be cumbersome, especially if you
have never worked with any code editing software before. Eventually, these IDEs yield larger benefits when working
on extensive projects that entail much more code writing, integration, and testing compared with what is necessary in
this course.

While working on your notebooks, unexpected events may occur. If so, the first aid for you may be the documentation
page What to do when things go wrong describing how to proceed when Jupyter fails to start, your kernel cannot be
launched, a notebook does not load or does not work in a browser.

Therefore, it is essential you learn how to debug and edit your Python code directly in Jupyter notebooks (in a web
browser). You can do so by making use of the so-called magic commands. Magic commands are IPython kernel
enhancements of the normal Python code, dedicated to problem solving. An extensive list of magic commands with
examples of their use can be found on the website called 28 Jupyter Notebook Tips and Tricks. Below, we will mention
some of those magic commands which you will see in the Jupyter notebooks of this course.

Cell execution history

As long as your Python kernel is active, there is an input history logging the code execution of each cell. This comes
in handy when you have accidentally deleted a cell.

Autoreload

The notebook typically needs to be restarted whenever you edit the code of an already imported module or package.
To avoid making it tedious, we use the following two magic commands:

%load_ext autoreload
%autoreload 2

%debug and the IPython debugger

For debugging, you can use the %debug command. Whenever you encounter an error or exception, just open a new
notebook cell, type %debug and run the cell. Then, a command line will be opened, where you can perform code
testing and inspect all variables up to the line which triggered the error. Type n and hit Enter to run the next line of
code (The→ arrow shows you the current position). Use c to continue until the next breakpoint. q quits the debugger
and code execution.

8 Chapter 1. Interactive notebooks

https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/?wt.mc_id=DX_841432
https://code.visualstudio.com/?wt.mc_id=DX_841432
https://www.sublimetext.com/
https://jupyter-notebook.readthedocs.io/en/stable/troubleshooting.html
https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/

Medical Image Analysis (8DC00), Release v0.1

Another option is to make use of the IPython debugger library. Import the library as set_trace (from IPython.core.
debugger import set_trace) and use the set_trace() in any code cell of your notebook to create one or more
breakpoints. Executed cell will stop evaluating code at the first breakpoint and open a command line for detailed
inspection. In case any of your imported modules or functions do not work, you may also deploy the debugger there.

1.1. Help for Jupyter and Python 9

Medical Image Analysis (8DC00), Release v0.1

JupyterLab extensions

The Jupyter project is under constant development and a plethora of extensions for the user interface including more
notebooks viewers have been available as JupyterLab extensions. Among the various tools JupyterLab offers, advanced
debugging functionalities may come in handy. Nevertheless, these additional Jupyter API enhancers are absolutely not
mandatory to install for the purpose of our course.

1.2 Topic 1.1: Geometrical transformations

This notebook combines theory with exercises to support the understanding of geometrical transformations in medical
image analysis. Implement all functions in the code folder of your cloned repository, and test it in this notebook after
implementation by importing your functions to this notebook. Use available markdown sections to fill in your answers
to questions as you proceed through the notebook.

Contents:

1. Review of linear algebra

2. Introduction to medical image registration

• Applications of registration

• Classification of registration methods

• Causes of medical image misalignment

3. Geometrical transformations (theory and exercises)

3.1 Rigid transformations

3.2 Nonrigid transformations

3.3 Transform composition

3.4 Homogeneous coordinates

References:

[1] Fitzpatrick, J.M., Hill, D.L. and Maurer Jr, C.R., Image registration. LINK

• Rigid transformations: Fitzpatrick, J.M., et al. Image registration, section 8.2.1

• Non-rigid transformations: Fitzpatrick, J.M., et al. Image registration, section 8.2.2

[2] Kolter, Z. Do, C. Linear algebra review and reference. LINK

[3] Maintz JB, Viergever MA. A survey of medical image registration. Med Image Anal. 1998;2(1):1–36. LINK

[1]: %load_ext autoreload
%autoreload 2

10 Chapter 1. Interactive notebooks

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf
https://pubmed.ncbi.nlm.nih.gov/10638851/

Medical Image Analysis (8DC00), Release v0.1

1.2.1 1. Review of linear algebra

For animated explanation of linear algebra, you may refer to many YouTube channels, e.g. Essence of linear algebra.
It is recommended that you also read chapters 1-3 of the document by Kolter, Z. Do, C. Linear algebra review and
reference.

Scalars

A scalar is a single number, and can be represented by integers, real numbers, rational numbers, etc. Scalars are denoted
with italic font: a, n, t.

Vectors

In mathematical terms, a vector is a 1-D array of numbers, while in physics terms, a vector is simply an arrow pointing
in space, defined by its length and direction. While in physics, vectors do not have a common origin, in linear algebra,
they typically start from the root of a coordinate system (e.g. x,y,z). Computer scientists define vectors as ordered lists
of numbers. Vectors can be real, binary, integer, etc. An example notation for type and size of real vectors: R𝑛

𝑥 =

⎡⎢⎢⎢⎣
𝑥1

𝑥2

...
𝑥𝑛

⎤⎥⎥⎥⎦ (1.1)

In Python, we can create a vector of three elements using numpy (np) arrays or the function arange.

[2]: import numpy as np # importing the numpy library

x = np.array([0,1,2]) # arrays are type-set in square brackets
print(f'\nVector x is:\n {x}')

y = x.reshape(3,1) # the reshape function takes rows and columns as input arguments
print(f'\nVector y is:\n {y}. It has length of {len(y)} elements, and shape {y.shape}.')

Vector x is:
[0 1 2]

Vector y is:
[[0]
[1]
[2]]. It has length of 3 elements, and shape (3, 1).

Matrices

A matrix is a finite-dimensional rectangular array of numbers arranged in rows and columns. Whenever referring to a
matrix element, it is common to first list row (𝑖) before collumn (𝑗) indices. The type and shape of matrix 𝐴 can be
denoted as 𝐴𝐴𝐴 ∈ R𝑚×𝑛, where elements are arranged as follows:

𝐴𝐴𝐴 =

[︂
𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

]︂
(1.2)

In Python, we can create a matrix using the np.matrix() function, specifying row elements in comma-separated blocks:

1.2. Topic 1.1: Geometrical transformations 11

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf

Medical Image Analysis (8DC00), Release v0.1

[3]: M = np.matrix([[1,2],[3,4]])
print("\nMatrix M: \n", M)

Matrix M:
[[1 2]
[3 4]]

Matrix (Dot) Product

There are various operations that are done on matrices. Besides addition and subtraction, these operations can include
multiplication by a scalar, a vector or another matrix. Scalar multiplication means that each element of a matrix is
multiplied by a scalar. If we multiply an 𝑚 × 𝑛 matrix by a vector, then the output is a linear combination of all
columns (𝐶𝐶𝐶 = 𝐴𝐵𝐴𝐵𝐴𝐵, where 𝐶𝐶𝐶𝑖,𝑗 =

∑︀
𝑘 𝐴𝐴𝐴𝑖,𝑘𝐵𝐵𝐵𝑘,𝑗). It is however important to realize that order matters, i.e. matrix

multiplication is not commutative (𝐴𝐵𝐴𝐵𝐴𝐵 ̸= 𝐵𝐴𝐵𝐴𝐵𝐴).

[4]: # Example of matrix multiplication

A = np.matrix([[1,2,1], [0,2,1]])
B = np.matrix([[1,2,0], [0,3,1], [-2,1,1]])

Possible multiplication
print("\nMultiplication of A*B: \n", A*B)

Multiplication is not commutative (you can check the output error by uncommenting the␣
→˓line below)
#print("\nMultiplication of B*A: \n", B*A)

Multiplication of A*B:
[[-1 9 3]
[-2 7 3]]

Matrix transpose

The transpose of a matrix can be thought of as a mirror image across the main diagonal. The first column becomes the
first row, the second column becomes the second row, etc. An 𝑛×𝑚 matrix is said to be symmetric if A = A⊤, and
skew symmetric if A⊤ = −A. In other words, (𝐴𝐴𝐴⊤)𝑖,𝑗 = 𝐴𝐴𝐴𝑖,𝑗 , and (𝐴𝐵𝐴𝐵𝐴𝐵)⊤ = 𝐵𝐵𝐵⊤𝐴𝐴𝐴⊤.

[5]: # Matrix transpose is done using the transpose() function
M = np.matrix([[1,2],

[3,4]])

print("\nMatrix M: \n", M)
print("\nMatrix M transposed: \n", M.transpose())

Matrix M:
[[1 2]
[3 4]]

(continues on next page)

12 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

Matrix M transposed:
[[1 3]
[2 4]]

Identity matrix

An identity matrix of size 𝑛×𝑛 is a square matrix with ones on its main diagonal and all other elements equal to zero,
i.e. ∀𝑥𝑥𝑥 ∈ R𝑛, 𝐼𝐼𝐼𝑛𝑥𝑥𝑥 = 𝑥𝑥𝑥.

𝐼𝐼𝐼 =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ (1.3)

[6]: # Identity matrix can be created using the eye() or identity () function
N = np.eye(3)
M = np.identity(2, dtype = float) #dtype determines the data type of a variable

print("\nMatrix N with eye(): \n", N)
print("\nMatrix M with identity(): \n", M)

Matrix N with eye():
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

Matrix M with identity():
[[1. 0.]
[0. 1.]]

Matrix inversion

A matrix inverse is a matrix which when multiplied by the original matrix will yield an identity matrix. Matrix inverse
is denoted as: 𝐴𝐴𝐴−1𝐴𝐴𝐴 = 𝐼𝐼𝐼𝑛. However, not all matrices have their inverse form. The inverse of a matrix exists only if
the matrix is non-singular (det𝐴 ̸= 0). A system of equations can be solved using matrix inverse as follows:

𝐴𝑥𝐴𝑥𝐴𝑥 = 𝑏 (1.4)
𝐴𝐴𝐴−1𝐴𝑥𝐴𝑥𝐴𝑥 = 𝐴𝐴𝐴−1𝑏𝑏𝑏(1.5)

𝐼𝐼𝐼𝑛𝑥𝑥𝑥 = 𝐴𝐴𝐴−1𝑏𝑏𝑏(1.6)
(1.7)

[7]: # Matrix inversion can be calculated using the numpy function linalg.inv():

Taking a 3 * 3 matrix
A = np.array([[6, 1, 1], [4, -2, 5], [2, 8, 7]])

A_inv = np.linalg.inv(A)
Calculating the inverse of the matrix
print("\nThe inverse of matrix A is: \n", A_inv.round(3))

1.2. Topic 1.1: Geometrical transformations 13

Medical Image Analysis (8DC00), Release v0.1

The inverse of matrix A is:
[[0.176 -0.003 -0.023]
[0.059 -0.131 0.085]
[-0.118 0.15 0.052]]

Special matrices and vectors

There is a plethora of special matrices and vectors in linear algebra, the explanation of which is beyond the scope of
this notebook. To name a couple of examples, a unit vector is a vector of length 1: ||𝑥𝑥𝑥||2 = 1; a symmetric matrix is a
matrix which is equal to its transposed form: 𝐴𝐴𝐴 = 𝐴𝐴𝐴⊤; and a square matrix is said to be orthogonal or orthonormal if
its transpose is equal to the inverse (𝐴𝐴𝐴−1 = 𝐴𝐴𝐴⊤) of that matrix: 𝐴𝐴𝐴⊤𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴⊤ = 𝐼𝐼𝐼 .

Systems of equations

Via the so-called augmented matrices, one can solve systems of equations. This process is not vastly different from
what you normally do when solving single equations. Augmented matrices contain all equation arguments as rows.
The operations on these rows consist of switching two rows, multiplication of a row by a nonzero number, and replacing
a row by a multiple of another row added to it. Any row operation can be undone by another inverse row operation.
Here, we show an example in Python to solve the following system of equations:

8𝑥+ 3𝑦 − 2𝑧 = 9 (1.8)
−4𝑥+ 7𝑦 + 5𝑧 = 15(1.9)
3𝑥+ 4𝑦 − 12𝑧 = 35(1.10)

[8]: # Solving systems of equations is easy using the numpy function linalg.solve():

A = np.array([[8, 3, -2], [-4, 7, 5], [3, 4, -12]])
b = np.array([9, 15, 35])
x = np.linalg.solve(A, b)

print("\nSolution for given system of equations [x,y,z] is: \n", x.round(2))

Solution for given system of equations [x,y,z] is:
[-0.58 3.23 -1.99]

Norms

Norms are defined as functions that measure the magnitude of a matrix or vector. E.g. the distance of a vector from
its origin is called a Euclidean norm, which can also be defined as the square root of the inner product of a vector with
itself. The norm of a matrix expresses the magnitude of that matrix regardless of the number of its elements. Vector
norms have the following three properties:

𝑓(𝑥𝑥𝑥) = 0 =⇒ 𝑥𝑥𝑥 = 0 (1.11)
𝑓(𝑥+ 𝑦𝑥+ 𝑦𝑥+ 𝑦) ≤ 𝑓(𝑥𝑥𝑥) + 𝑓(𝑦𝑦𝑦) (triangle inequality)(1.12)

∀𝛼 ∈ R, 𝑓(𝛼𝑥𝑥𝑥) = |𝛼|𝑓(𝑥𝑥𝑥)(1.13)
(1.14)

14 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

[9]: # Norms can be calculated in Python using the numpy function linalg.norm()
This function returns one of the seven matrix norms
or one of the infinite vector norms depending upon the value of its parameters.

initialize vector
x = np.arange(20)

compute norm of vector
x_norm = np.linalg.norm(x)

print("\nVector norm of x is: \n", x_norm.round(2))

Vector norm of x is:
49.7

Determinant

Determinant of a matrix is a special number defined only for square matrices, representing the matrix in terms of
a real number which can be used to solve systems of linear equations and finding matrix inverse. Determinant of a
transformation matrix T is the signed area of a unit square shape after transforming with T. The sign reflects whether
the orientation has changed or not. The determinant of a 2× 2 matrix is calculated as the subtraction of cross-diagonal
element multiplication. It is common to use the absolute value of the determinant:

det

(︂
𝑎 𝑏
𝑐 𝑑

)︂
= |𝑎𝑑− 𝑏𝑐| (1.15)

[10]: # The determinant of a matrix can be calculated using the numpy function linalg.det():

M = np.matrix([[1,2],[3,4]])

M_det = abs(np.linalg.det(M))

print("\nDeterminant of matrix M: \n", M_det)

Determinant of matrix M:
2.0000000000000004

1.2. Topic 1.1: Geometrical transformations 15

Medical Image Analysis (8DC00), Release v0.1

1.2.2 2. Introduction to (medical) image registration

Image registration is the determination of a geometrical transformation that aligns one view of an object with another
view of that object or another object. The term “view” refers to a two-, three-dimensional image or the physical
representation of an object in space. An example of two-dimensional image types may be x-ray projections captured
as a digital radiograph or a light projection in a video frame. Three-dimensional images can be collected by imaging
modalities commonly used in hospital settings, e.g. computed tomography (CT) or magnetic resonance (MR) imaging
scanners. Generally, images are stored as discrete arrays of intensity values, and in medical applications, the object in
each view will represent an anatomical region of interest. Explained mathematically, the inputs of registration are two
views, which we map together by matching points positioned in one view to points in another view.

Applications of registration

Registration may be applied to various purposes. It allows us to combine information from different sources (MR-
guided radiotherapy planning) or investigate longitudinal changes in e.g. post-treatment patient monitoring. Moreover,
registration procedures are employed when studying group changes across multiple subjects in a trial. Last but not
least, registration can aid in segmentation tasks when mapping atlases with anatomical model priors to a newly acquired
medical image, or when performing e.g. motion-induced image artefact corrections.

Classification of registration methods

There is a complex categorization of registration methods in the field. The following eight categories have been pro-
posed in relevant literature (Fitzpatrick, J.M., et al. Image registration, section 8.1.2): image dimensionality, registra-
tion basis, geometrical transformation, degree of interaction, optimization procedure, modalities, subject, and object.
In medical applications, we typically work with individual two-dimensional slices or three-dimensional image vol-
umes, which may be acquired sequentially over time or as a series of multiple 3D volumes (e.g. diffusion MR images).
Registration may be performed via various bases, using either a location in respective views (point-based registration)
or intensity similarities (intensity-based registration). Further classification of registration methods can be based on
geometrical transformations, i.e. which geometrical manipulation (rigid, affine, nonlinear, etc.) are applied for align-
ment between two different spaces. Registration can be either automatic or semi-automatic, depending on the amount
of human interaction during the registration process. The quality of registration output is estimated continuously dur-
ing the procedure either as a closed-form solution or iteratively. At last, registration methods are stratified according
to the amount of modalities they involve (multi-modal, intra-modal), the subjects involved in a trial (inter-subject,
intra-patient, atlas-based), and commonly also the anatomical object of interest (e.g. brain, liver, etc.).

Causes of medical image misalignment

There are various reasons for misalignments across multiple images / volumes in a series or two images acquired at
different time points. In measurements where patient compliance is crucial, different patient positioning, physiological
movements of organs (heartbeat, breathing, cerebrospinal fluid flow), patient motion during image acquisition, and
distortions caused by imaging systems (e.g. due to the design of imaging sequences in magnetic resonance imaging)
can cause data misalignment. In cases where image acquisition includes interventions (e.g. surgery, chemotherapy,
biopsy), users benefit from image registration as well.

An example of how digital subtraction angiography benefits from image registration:

16 Chapter 1. Interactive notebooks

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

1.2.3 3. Geometrical transformations (theory and exercises)

In registration operations, each involved view is defined by a coordinate system. As written above, registration is the
act of mapping points from space 𝑋 to space 𝑌 . A successful registration is achieved when the point 𝑦 in space 𝑌 is
approximately equal or completely correspondent to 𝑥′ after a transformation 𝑇 has been applied to point 𝑥 in 𝑋 . In
the picture below, geometrical transformation 𝑇 aligns the moving axial brain scan with the fixed one.

1.2. Topic 1.1: Geometrical transformations 17

Medical Image Analysis (8DC00), Release v0.1

1.2.4 3.1 Rigid transformations

Rigid transformations (Fitzpatrick, J.M., et al. Image registration, section 8.2.1) are geometrical alignments of two ob-
jects that preserve distances, the planarity of surfaces and angles between straight lines. The so-called rigid registration
problems involve object translation and rotation.

Translation

Translation is arguably the “simplest” geometrical transformation that can be applied to an object. Assuming that the
coordinates of a 2D geometric object are stored in the variable 𝑋 (the first row contains the horizontal coordinates and
the second row contains the vertical coordinates), translation of the geometric object can be performed by adding a 2D
translation vector 𝑋𝑡 to every vertex of 𝑋 , as shown in the Python example below.

[11]: import numpy as np

An example of translation in Python:
X = np.matrix([[1,2,3],[1,4,6]])
Xt = [4,5]

X[0,:] = X[0,:] + Xt[0]
X[1,:] = X[1,:] + Xt[1]

print("\nTranslation of the first vector X[0,:]: \n", X[0,:])
print("\nTranslation of the second vector X[1,:]: \n", X[1,:])

Translation of the first vector X[0,:]:
[[5 6 7]]

Translation of the second vector X[1,:]:
[[6 9 11]]

Rotation

Image rotation is a rigid transformation that requires a rotation angle 𝜃 defining the number of degrees for rotation.
Typically, rotation is done about image origin (e.g. 𝑥0, 𝑦0).

[12]: # An example of rotation in Python using numpy and scipy:
X = np.matrix([[1,2,3],[1,4,6]])

X_rotated_90 = np.rot90(X)

from scipy.ndimage import rotate
X_rotated_270 = rotate(X, angle = 270, reshape=True)

print("\nRotation by 90 degrees: \n", X_rotated_90)
print("\nRotation by 270 degrees: \n", X_rotated_270)

Rotation by 90 degrees:
[[3 6]
[2 4]
[1 1]]

(continues on next page)

18 Chapter 1. Interactive notebooks

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

Rotation by 270 degrees:
[[1 1]
[4 2]
[6 3]]

1.2.5 3.2 Nonrigid transformations

Nonrigid transformations (Fitzpatrick, J.M., et al. Image registration, section 8.2.2) are essential in registration op-
erations for interpatient comparisons of rigid anatomies, as well as intrapatient registration of anatomical structures
with artifactual distortions induced during image acquisition of nonrigid anatomies (e.g. MRI scans of beating heart).
Nonrigid transformations include scaling, where the straightness of lines and the angles between them are preserved
(used e.g. to suppress calibration errors in MR scanners), and affine transformations, where the angle between lines
may be changed (used e.g. in deskewing a CT image after improper gantry angle recording). Further examples of
nonrigid registrations comprise projective, perspective and curved registration methods (see chapters. . .)

Let us leave translation aside for now and focus on the other, more complex geometrical transformations. The identity,
scaling, reflection and shearing transformations (or any combination of these transformations) can be performed by
multiplying the matrix of coordinates 𝑋 with an appropriate transformation matrix 𝑇 . Here is an example of Python
code that compute transformation matrices for the identity transformation (which is not really a transformation) and
scaling:

Scaling

Scaling can be performed for example in the following way: X_scaled = scale(2,3)*X. To verify this, we can use
the provided test_object() function in the registration_util.py module that returns a test geometrical object
in the shape of the letter F, and plot the original object and a scaled version of it (the provided plot_object() function
in the registration_util.py module can be used to plot the geometrical object) as follows:

[13]: %matplotlib inline
import matplotlib.pyplot as plt
import registration as reg
import registration_util as util

def identity():
T = np.eye(2)
return T

def scale(sx, sy):
T = np.array([[sx,0],[0,sy]])
return T

X = util.test_object(1)
X_scaled = reg.scale(2, 3).dot(X)

fig = plt.figure(figsize=(5,5))
ax1 = fig.add_subplot(111)

(continues on next page)

1.2. Topic 1.1: Geometrical transformations 19

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

ax1.grid()
util.plot_object(ax1, X)
util.plot_object(ax1, X_scaled)

ModuleNotFoundError Traceback (most recent call last)
Cell In[13], line 3

1 get_ipython().run_line_magic('matplotlib', 'inline')
2 import matplotlib.pyplot as plt

----> 3 import registration as reg
4 import registration_util as util
6 def identity():

ModuleNotFoundError: No module named 'registration'

Reflection

Reflection is the mirror transformation of an image along a given axis.

Shearing

Shearing transformation (a.k.a transvection) is a type of transformation where each point is displaced by a distance
proportional to the perpendicular distance from the point’s parallel line. In 3D, planes are sheared instead of points.

[14]: # An example of reflection in Python:
X = np.matrix([[1,2,3],[1,4,6]])

X_right_left = np.fliplr(X)
X_upside_down = np.flipud(X)

print(X_right_left)
print(X_upside_down)

[[3 2 1]
[6 4 1]]
[[1 4 6]
[1 2 3]]

Exercise 3.2.1:

Implement functions that return transformation matrices for 2D rotation, shear and reflection. You can find the templates
for these three function definitions in SECTION 1 of the registration.py module. To test your implementation, run
the transforms_test() script from the registration_tests.py module and make sure that the output matches
the figure below.

20 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

[15]: %matplotlib inline
from registration_tests import transforms_test

transforms_test()

ModuleNotFoundError Traceback (most recent call last)
Cell In[15], line 2

1 get_ipython().run_line_magic('matplotlib', 'inline')
----> 2 from registration_tests import transforms_test

4 transforms_test()

ModuleNotFoundError: No module named 'registration_tests'

Question 3.2.1:

What is rigid and what affine transformation? How many degrees of freedom dothese two types of transformations
have in 2D?

Type your answer here

1.2. Topic 1.1: Geometrical transformations 21

Medical Image Analysis (8DC00), Release v0.1

Question 3.2.2:

What is the minimum number of corresponding point pairs needed to fit a 2D affine transform? How about 3D?
Motivate your answer.

Type your answer here

1.2.6 3.3 Transform composition

Geometrical transformations can be combined by multiplying transformation matrices. These compositions may in-
volve rotation and translation, or even rotation, scaling, shearing, reflection and translation altogether. For example,
the following (conceptual) command first applies a 90° rotation to an object and then a vertical reflection: X_t =
reg.reflect(-1,1).dot(reg.rotate(np.pi/2)).dot(X).

Question 3.3.1:

Would the result be different if the two transformations in the example above are applied in reversed order? Motivate
your answer.

Type your answer here

Question 3.3.2:

How can you compute the inverse of an affine transformation represented with a transformation matrix?

Type your answer here

Exercise 3.3.1:

Test a few more examples of combining transformations. Save the examples in the combining_transforms() script
template in the registration_tests.py module.

[16]: %matplotlib inline
from registration_tests import combining_transforms
combining_transforms()

22 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

ModuleNotFoundError Traceback (most recent call last)
Cell In[16], line 2

1 get_ipython().run_line_magic('matplotlib', 'inline')
----> 2 from registration_tests import combining_transforms

3 combining_transforms()

ModuleNotFoundError: No module named 'registration_tests'

1.2.7 3.4 Homogeneous coordinates

As mentioned in the beginning of the previous exercise, translation can be performed by adding a translation vector to
the coordinates of an object. Translation can be combined with other geometrical transformations, for example:

[17]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import registration as reg
import registration_util as util

X = util.test_object(1)

translation vector
t = np.array([10, 20])

rotate by 45 deg.
X_rot = reg.rotate(np.pi/4).dot(X)

translate by 10 in the horizontal and 20 in the vertical direction
X_rot_tran = np.empty(shape=X.shape)
X_rot_tran[0,:] = X_rot[0,:] + t[0];
X_rot_tran[1,:] = X_rot[1,:] + t[1];

fig = plt.figure(figsize=(5,5))
ax1 = fig.add_subplot(111)
ax1.grid()
util.plot_object(ax1, X)
util.plot_object(ax1, X_rot_tran)

ModuleNotFoundError Traceback (most recent call last)
Cell In[17], line 4

2 import numpy as np
3 import matplotlib.pyplot as plt

----> 4 import registration as reg
5 import registration_util as util
7 X = util.test_object(1)

ModuleNotFoundError: No module named 'registration'

1.2. Topic 1.1: Geometrical transformations 23

Medical Image Analysis (8DC00), Release v0.1

However, this way of combining translation with other transformations can be a bit cumbersome (it somewhat com-
plicates the mathematical notation and implementation in code). The transformations that you have implemented in
the previous exercise can be straightforwardly combined with translation by converting the transformation matrix to
homogeneous form. This matrix can then be applied to the homogeneous coordinates (details can be found in the
lecture slides). The function c2h() given below (also available in the registration_util.py module) implements
conversion from Cartesian coordinates to homogeneous coordinates. As you can see from the code, this conversion is
performed by simply adding an additional row of coordinates with all ones:

[18]: %matplotlib inline
import registration_util as util

X = util.test_object(1)
Xh = util.c2h(X)

print('X:\n{}\n'.format(X))
print('Xh:\n{}\n'.format(Xh))

ModuleNotFoundError Traceback (most recent call last)
Cell In[18], line 2

1 get_ipython().run_line_magic('matplotlib', 'inline')
----> 2 import registration_util as util

4 X = util.test_object(1)
5 Xh = util.c2h(X)

ModuleNotFoundError: No module named 'registration_util'

Exercise 3.4.1:

Implement the function called t2h() in the registration_util.py module that converts a transformation matrix
and a translation vector to a transformation matrix in homogeneous form. The template for this definition is already
provided in the module file. To test your function, verify that the t2h_test() script results in the same object as the
example above (note that the function plot_object() also works with homogeneous coordinates):

[19]: %matplotlib inline
from registration_tests import t2h_test

t2h_test()

ModuleNotFoundError Traceback (most recent call last)
Cell In[19], line 2

1 get_ipython().run_line_magic('matplotlib', 'inline')
----> 2 from registration_tests import t2h_test

4 t2h_test()

ModuleNotFoundError: No module named 'registration_tests'

The rotation transformation rotates the objects counterclockwise around the origin of the coordinate system. To perform
rotation around an arbitrary point, the following sequence of transformations must be applied:

1. Translate the object so the arbitrary rotation point is translated to the origin of the coordinate system

24 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

2. Rotate the object

3. Translate the object back so that the arbitrary rotation point is in the original location.

These three transformations can be combined by multiplying the three homogeneous transformation matrices. Com-
bining transformation matrices in homogeneous form works in the same way as the “regular” transformation matrices,
i.e. by matrix multiplication.

#

Exercise 3.4.2:

Write an example that rotates the test object by 45° around the first vertex (hint: the first vertex is X[:,0] and t2h(reg.
identity(), Xt) is a homogeneous transformation matrix that performs only translation). Save the example in the
provided arbitrary_rotation() template in the registration_tests.py module. The result should match the
one shown in the figure below.

[20]: %matplotlib inline

import sys
sys.path.append("../code")
from registration_tests import arbitrary_rotation

arbitrary_rotation()

1.2. Topic 1.1: Geometrical transformations 25

Medical Image Analysis (8DC00), Release v0.1

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[20], line 5
from registration_tests import arbitrary_rotation

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

Question 3.4.1:

Assuming you have implemented the missing functionality correctly, will the following line of code result in an apparent
clockwise or counter-clockwise rotation of the image? Motivate your answer. (Hint: think about the coordinate system
of the image, also shown in the figures illustrating forward and inverse mapping above.)

It = image_transform(I, t2h(rotate(pi/4), [0 0]))

Type your answer here

1.3 Topic 1.2: Point-based registration

This notebook combines theory with exercises to support the understanding of point-based registration in medical
image analysis. Implement all functions in the code folder of your cloned repository, and test it in this notebook after
implementation by importing your functions to this notebook. Use available markdown sections to fill in your answers
to questions as you proceed through the notebook.

Contents:

1. Point-based registration (theory)

• Optimization

• Evaluation of image registration accuracy

2. Point-based transformations (theory and exercises)

2.1 Inverse mapping

2.2 Least squares solution to an overdetermined system of linear equations

2.3 Least squares fitting of an affine transformation

References:

[1] Point-based registration: Fitzpatrick, J.M., et al. Image registration, chapter 8.3

26 Chapter 1. Interactive notebooks

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

[1]: %load_ext autoreload
%autoreload 2

1.3.1 1. Point-based registration (theory)

Image registration driven by a reliable (set of) reference point(s) on both the fixed and moving views is referred to
as point-based (Fitzpatrick, J.M., et al. Image registration, chapter 8.3). Selected points in the fixed image that are
considered reliable, and are typically called fiducial points or fiducials, can be part of two groups of distinguishable
features: intrinsic features (anatomical landmarks, such as the intersection of the central sulcus with the midline of the
brain), or extrinsic features (implanted markers, e.g. on a head coil).

Unlike in landmark-based registration, marker-based registration tends to be more precise due to its independence of
anatomical structures which may sometimes be hard to discern. Fiducial points within markers may be produced via
automated methods that typically assign location to the centroid of the marker.

A perfect fiducial alignment is typically impossible due to multiple reasons. There is always some fiducial localization
error of the marker, and misalignments, shifts or distortions of the markers may occur relative to the voxel grid. The aim
of fiducial-guided registration is to minimize the variance in the two views. Generally, the effective mean displacement
will be smaller in magnitude if the marker is larger (ideally beyond the voxel size) and vice versa. Larger markers
spanning more than two voxels can be more accurately localized, thereby improving the registration outcome. Reasons
are three-fold:

1. When the marker is large, the fraction of partially filled voxels within it is lower

2. Erroneous shifts are cancelled out when the marker partially fills more voxels

3. Noise averaging over a larger number of voxels

Example: Assuming two images misaligned by translation, a simple registration algorithm that is efficient in this
example would consist of these steps:

• Mark the location of some well discernible features in the fixed image

• Mark the corresponding location in the moving image

• Compute the translation as 𝑡 = 𝑥′ − 𝑥

• Transform the moving image by translating it with −t

It is therefore unrealistic to look for an algorithm that will find a transformation that results in a perfect alignment of
all corresponding fiducial pairs. However, we can design an algorithm that will find a transformation that results in
the best possible alignment given that fact that there will always be some error. The better an algorithm aligns the two
views, the lower this error becomes.

How to find the transformation that aligns fiducials at the lowest possible alignment error?

• Step 1: Write the error as a function of the transformation (affine registration)

• Step 2: Find the minimum of the error function w.r.t. the transformation

1.3. Topic 1.2: Point-based registration 27

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

Optimization

Optimization involves finding the best parameters according to an objective function, which is either minimised or
maximised. If we have a method that finds the maximum of a function, it can be easily used to find a minimum by
inverting the function.

Question 1.1:

Why is full search of the parameter space not the most efficient optimization approach in 2D? Ideally, explain by
example.

Type your answer here

Question 1.2:

What would be a better solution?

Type your answer here

Evaluation of image registration accuracy

Image registration can be evaluated by computing the registration error for some target corresponding point pairs. The
target points should be selected in locations that are relevant for some treatment or diagnosis. Basically, this is the same
as the process of selecting corresponding point pairs to compute the image transformation. The following steps should
be made when evaluating registration accuracy:

1. Perform image registration (compute the transformation matrix T)

2. Annotate some target corresponding point pairs in the fixed and moving images. These must be different from
the corresponding points used to compute the transformation T, and located at locations that are relevant for
some treatment or diagnosis.

3. Transform the points from the moving image

4. Compute the target registration error as the average distance between points in the fixed image and the transformed
moving points.

28 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 1.3:

In the registration evaluation procedure, the target corresponding points must be different from the points used to
compute the image transformation. Why?

Type your answer here

1.3.2 2. Point-based transformations (theory and exercises)

The term ‘’image transformation” refers to the transformation of pixel spatial coordinates. Images are stored as arrays
of values where each corresponds to a pixel intensity. In addition to the intensity, in medical imaging, each pixel is
associated with spatial coordinates (these are in some world coordinate system where the pixel intensity value appears),
and extent (the physical extent of a pixel).

In the exercises below, we assume that the pixel indices correspond to the spatial coordinates. Moreover, we assume
that all images have pixels of the same size and shape (unit size isotropic). Unlike in these exercises, the concepts of
physical pixel size and spatial coordinates are vital in practice.

The problem with forward mapping of the coordinates are gaps, and overlaps. These can be avoided by using inverse
mapping and interpolation.

Following steps describe the inverse mapping of an image with a transformation T:

1. Define a grid of the output image

2. Map the grid points to the input image with inverse transform T−1.

3. Determine the intensity value at those locations with image interpolation

In the previous exercises you have implemented functions for computing transformation matrices and applied them to
geometric objects. In these exercises you will first write a Python function that performs image transformation by the
inverse mapping method. Then, you will implement a function that performs linear least squares fitting. All necessary
information for implementing these functions can be found in the lecture slides. You can use the functions that you
implement in this section to perform point-based affine image registration in the project work.

2.1 Inverse mapping

Transforming an image results in transforming the locations of the image pixels. The most obvious method for trans-
forming an image is to apply the geometric transformation to all pixel locations in an input image (the image that is
being transformed) in order to determine where those pixel should be located in the output image (the transformed
image) and then “fill in” the corresponding intensity values. This approach is called forward mapping and is illustrated
in the figure below.

1.3. Topic 1.2: Point-based registration 29

Medical Image Analysis (8DC00), Release v0.1

Figure from Steve on Image Processing and MATLAB

The forward mapping method can be problematic as some pixels in the output image might not “receive” a value
(resulting in gaps), while some pixels might “receive” multiple values (resulting in overlaps) from the input image.
These problems can be avoided by using an approach called inverse mapping illustrated in the figure below. Inverse
mapping works by transforming the locations of the output image back to the original image by applying the inverse
of the geometric transformation. The values for the pixels of the transformed image can be obtained by interpolation
at the determined location in the original image. This avoids the problem of gaps and multiple values of the forward
mapping method.

Figure from Steve on Image Processing and MATLAB

30 Chapter 1. Interactive notebooks

https://blogs.mathworks.com/steve/2006/05/05/spatial-transformations-inverse-mapping
https://blogs.mathworks.com/steve/2006/05/05/spatial-transformations-inverse-mapping

Medical Image Analysis (8DC00), Release v0.1

Question 2.1.1:

A template for implementing an image transformation function with inverse mapping is provided in the
image_transform() function in SECTION 2 of the registration.py module. Read the documentation for the
numpy.meshgrid() function that is used in the first part of this function (you can quickly look up the documentation
by clicking here. Briefly explain what the following line of code does (what are the inputs and outputs?):

x = np.arange(0, output_shape[1])
y = np.arange(0, output_shape[0])
xx, yy = np.meshgrid(x, y)

Type your answer here

Exercise 2.1.1:

Implement the missing functionality in the image_transform() function. You will find the function in the
registration.py module. It is only missing a few lines of code that performs inverse mapping of the coordinates,
and tests for exceptions.

Once you have finalized your implementation, test it below. Run image_transform_test() from SECTION 2 of the
registration_tests.py module and make sure that the output matches the result in the figure below.

[2]: import numpy as np
import sys
sys.path.append('../code')
sys.path.append('../data')

from registration_tests import image_transform_test
image_transform_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[2], line 6
from registration_tests import image_transform_test

File ../code/registration_tests.py:144
(continues on next page)

1.3. Topic 1.2: Point-based registration 31

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

def ls_affine_test():
^

IndentationError: expected an indented block

2.2 Least-squares solution to an overdetermined system of linear equations

A set of linear equations can be written in matrix form in the following way:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎1,1𝑤1 + 𝑎1,2𝑤2 + . . .+ 𝑎1,𝑛𝑤𝑛 = 𝑏1
𝑎2,1𝑤1 + 𝑎2,2𝑤2 + . . .+ 𝑎2,𝑛𝑤𝑛 = 𝑏2

...
𝑎𝑚,1𝑤1 + 𝑎𝑚,2𝑤2 + . . .+ 𝑎𝑚,𝑛𝑤𝑛 = 𝑏𝑚⎡⎢⎢⎢⎣

𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛
𝑎2,1 𝑎2,2 . . . 𝑎2,𝑛

...
...

. . .
...

𝑎𝑚,1 𝑎𝑚,2 . . . 𝑎𝑚,𝑛

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑤1

𝑤2

...
𝑤𝑛

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑏1
𝑏2
...
𝑏𝑚

⎤⎥⎥⎥⎦ (1.16)

Aw = b (1.17)
where w is an 𝑛𝑥1 column-vector of the unknown variables 𝑤𝑖, A is an 𝑚𝑥𝑛 matrix of the known coefficients and 𝑎𝑖,𝑗
and b is an 𝑚𝑥1 column-vector of the known constant terms 𝑏𝑖. Solving the set of equations means finding the values
of 𝑤𝑖 that satisfy the set of equations.

• When 𝑚 < 𝑛 the equations have no unique solution.

• When 𝑚 = 𝑛 the equations have a unique solution.

• When 𝑚 > 𝑛 the equations are overconstrained and there may not be an exact solution for z. In this case, what
is often consider is minimization of the squared error.

Exercise 2.2.1:

In SECTION 2 of the registration.py module, ls_solve() contains a template for a function that finds the least
squares solution for w. Implement the missing functionality of that function.

Test your implementation by solving the following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
3𝑤1 + 4𝑤2 = 1

5𝑤1 + 6𝑤2 = 2

7𝑤1 + 8𝑤2 = 3

17𝑤1 + 10𝑤2 = 4

(1.18)

In order to do so, you have to create the A matrix and the B vector in Python and then call the ls_solve() function.
Implement your code in the ls_solve_test() script in the registration_tests.py module.

The found solution should be w = [0.0694, 0.2842]⊤.

32 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

[3]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import ls_solve_test

ls_solve_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[3], line 4
from registration_tests import ls_solve_test

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

Question 2.2.1:

For which equation does the solution result in the largest error?

Type your answer here

2.3 Least-squares fitting of an affine transformation

In point-based image registration, the goal is to find a transformation that aligns the moving with the fixed image given
a set of corresponding points in the two images. In the case of affine registration, we make an assumption that the two
sets of points are related trough the transformation matrix in the following way:

TX′ = X (1.19)⎡⎣ 𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

0 0 1

⎤⎦⎡⎣ 𝑥′
1 𝑥′

2 . . . 𝑥′
𝑛

𝑦′1 𝑦′2 . . . 𝑦′𝑛
1 1 . . . 1

⎤⎦ =

⎡⎣ 𝑥1 𝑥2 . . . 𝑥𝑛

𝑦1 𝑦2 . . . 𝑦𝑛
1 1 . . . 1

⎤⎦ (1.20)

In the previous expression, {𝑥𝑖, 𝑦𝑖} are the coordinates of the points in the fixed image, {𝑥′
𝑖, 𝑦

′
𝑖} are the coordinates of

the corresponding points in the moving image and 𝑤𝑖 are the elements of the transformation matrix (for example, 𝑤3

and 𝑤6 are the translation parameters). If we transpose both sides of this equation, it will immediately become obvious
that this expression defines two systems of linear equations:⎡⎢⎢⎢⎣

𝑥′
1 𝑦′1 1

𝑥′
2 𝑦′2 1
...

...
...

𝑥′
𝑚 𝑦′𝑚 1

⎤⎥⎥⎥⎦
⎡⎣ 𝑤1 𝑤4 0

𝑤2 𝑤5 0
𝑤3 𝑤6 1

⎤⎦ =

⎡⎢⎢⎢⎣
𝑥1 𝑦1 1
𝑥2 𝑦2 1
...

...
...

𝑥𝑚 𝑦𝑚 1

⎤⎥⎥⎥⎦ (1.21)

1.3. Topic 1.2: Point-based registration 33

Medical Image Analysis (8DC00), Release v0.1

The two systems of equations are:⎡⎢⎢⎢⎣
𝑥′
1 𝑦′1 1

𝑥′
2 𝑦′2 1
...

...
...

𝑥′
𝑚 𝑦′𝑚 1

⎤⎥⎥⎥⎦
⎡⎣ 𝑤1

𝑤2

𝑤3

⎤⎦ =

⎡⎢⎢⎢⎣
𝑥1

𝑥2

...
𝑥𝑛

⎤⎥⎥⎥⎦ , and

⎡⎢⎢⎢⎣
𝑥′
1 𝑦′1 1

𝑥′
2 𝑦′2 1
...

...
...

𝑥′
𝑚 𝑦′𝑚 1

⎤⎥⎥⎥⎦
⎡⎣ 𝑤4

𝑤5

𝑤6

⎤⎦ =

⎡⎢⎢⎢⎣
𝑦1
𝑦2
...
𝑦𝑚

⎤⎥⎥⎥⎦ (1.22)

The first system gives the solution for 𝑤1, 𝑤2 and 𝑤3. Similarly, the second system gives the solution for 𝑤4, 𝑤5 and
𝑤6.

Exercise 2.3.1:

Implement least squares fitting of an affine transform in the provided ls_affine() function template in SECTION 2
of the registration.py module. You have to form the b vector for the two systems of equations. The A matrix is
the same for both systems and already implemented with the line 𝐴 = 𝑋𝑚′. Then call ls_solve() to solve the two
systems. Finally, you have to use the computed parameters to form a homogeneous transformation matrix (e.g. the first
row of the transformation matrix will be the solution for the first linear system of equations).

Test your implementation by calling ls_affine_test() from SECTION 2 of the registration_tests.pymodule.
This function applies some arbitrary affine transformation to a test object, and then transforms the object back to the
original with a transformation that is computed with ls_affine(). If your implementation is correct the retrieved
object should match the original object in the displayed figure.

[4]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import ls_affine_test

ls_affine_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[4], line 4
from registration_tests import ls_affine_test

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

34 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

1.4 Topic 1.3: Image similarity metrics

This notebook combines theory and exercises on image similarity metrics in medical image analysis. Implement all
functions in the code folder of your cloned repository, and test it in this notebook after implementation by importing
your functions to this notebook. Use available markdown sections to fill in your answers to questions as you proceed
through the notebook.

Contents:

1. Probability theory

• Random variables

• Probability mass function

• Probability density function

• Bayes’ rule

2. Image similarity metrics

2.0 Sum of squared differences

2.1 Normalized cross-correlation

2.2 Joint histogram

2.3 Mutual information

References:

[1] Image similarity metrics: Fitzpatrick, J.M., et al. Image registration, section 8.5.1

[1]: %load_ext autoreload
%autoreload 2

1.4.1 1. Probability theory

Random variables

Random variables map the outcomes of random phenomena to numbers. Remember the example with coin tossing in
the lecture? There, we had a random variable𝑋 (outcome of the coin toss), and another random variable 𝑌 (the number
of heads in a series of 3 tosses). To represent possible values and the respective probabilities of the magnitude of a
random variable, we use probability distribution functions. In a similar way, we can define medical image intensities
as random variables.

1.4. Topic 1.3: Image similarity metrics 35

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

Probability mass function (a.k.a probability distribution table)

Random phenomenon: Pick a random pixel location. In this case, the pixel intensity can be treated as a random variable.
Each outcome from the random phenomenon we are studying can be associated with a probability. If a random variable
𝑋 can have a finite set of possible values, we can define a function that maps each possible value to a probability. This
function is called probability mass function (PMF), and expresses a discrete probability distribution.

Probability mass function:

𝑝𝑋(𝑥) = 𝑃 (𝑋 = 𝑥)

Figure from Fong Chun Chan’s Blog

What if we have two random variables? For example, the pixel intensity in two images. In such case, we can define a
joint probability mass function:

𝑝𝑋,𝑌 (𝑥, 𝑦) = 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)

PMF can be used to determine the probability of an observation being exactly equal to a discrete target value. But how
can we define the probability mass function for the image intensities? We can use image histogram for this purpose by
counting the number of occurrences of each intensity value in the image. In order to treat the counts of the histogram
as probability values, we must normalize the histogram in such a way that all values sum to 1. This is the probability
mass function for the pixel intensity as a random variable.

36 Chapter 1. Interactive notebooks

https://tinyheero.github.io/2016/03/17/prob-distr.html

Medical Image Analysis (8DC00), Release v0.1

Probability density function

Probability mass function is defined for discrete random variables. In case of continuous random variables, however,
their probabilities are not directly measurable, and we therefore calculate the probability as the proportion of times.
Imagine you had a random variable that measured the price of a diamond. Now, what is the probability that a single
diamond’s price is exactly equal to e.g. 150 USD? The probability of getting a diamond for that exact price would be
very low, if any at all. Therefore, a given value of a variable on a continuous scale cannot be assigned a probability.
We therefore need to think in terms of intervals instead of individual outcomes. For continuous random variables,
which can take infinite number of possible values, we can define the probability density function (PDF), where the
probability of 𝑦 ∈ [𝑎, 𝑏] is equivalent to the integral of the PDF between 𝑎 and 𝑏:

𝑃 (𝑎 ≤ 𝑦 ≤ 𝑏) =
∫︀ 𝑏

𝑎
𝑓(𝑌) 𝑑𝑦

Figure from Fong Chun Chan’s Blog

Bayes’ rule

Bayes’ rule is a very useful formula that we will use later in the computer-aided diagnosis notebooks of this course.
The so-called Bayes’ theorem gives the probability of an event based on new information that is, or may be related, to
that event. Mathematically, the Bayes’ theorem can be expressed as follow:

𝑝𝑋|𝑌 =
𝑝𝑌 |𝑋(𝑥|𝑦)𝑝𝑌 (𝑦)

𝑝𝑋(𝑥) ,

where 𝑋 and 𝑌 are events and 𝑃 (𝑌) ̸= 0, and:

• 𝑝𝑋|𝑌 is the probability of event 𝑋 occurring given event 𝑌 is true; also known as the posterior probability of 𝑋
given 𝑌

• 𝑝𝑌 |𝑋(𝑥|𝑦) is the likelihood of 𝑋 given a fixed 𝑌

• 𝑝𝑋(𝑥) and 𝑝𝑌 (𝑦) are the probabilities of observing the two events without any given conditions; also known as
marginal or prior probabilities

• 𝑋 and 𝑌 are events (must not be the same)

1.4. Topic 1.3: Image similarity metrics 37

https://tinyheero.github.io/2016/03/17/prob-distr.html

Medical Image Analysis (8DC00), Release v0.1

Bayes’ theorem is typically utilized in diagnostic decision-making, e.g. to find out if there is a certain clinical manifes-
tation in a patient before images are acquired. Given the prevalence of a disease, a radiologist is able to first estimate
the marginal probability of the disease and afterwards assess medical images based on this prior. The Bayes’ rule en-
ables to derive positive predictive and negative predictive values in radiologists’ pre-assessment tasks. Furthermore,
this probability theorem also has its utility in cases with similar imaging findings in different diagnoses to calculate
the probability at which certain imaging characteristics pertain to rare or common diagnoses (regardless of complete
clinical contexts). The Bayes’ theorem is also used in algorithms for medical image artefact corrections, such as in
MRI and perfusion-weighted images to reduce noise. Bayesian inference has a wide range of applications in AI-driven
radiology software.

1.4.2 2. Image similarity metrics

Due to the prevalence of 3D volumes in medical imaging, the term voxel similarity measures is typically used to jointly
address these methods. In practice, algorithms perform registration between two images based on a voxel subset,
which is either randomly chosen or defined by a grid. In other applications, segmentation algorithms aid registration
by preselecting a subset of voxels comprising specific regions of interest. At last, similarity measures may be applied
on e.g. image gradients instead of voxel values themselves. More details on image similarity metrics can be found in
Fitzpatrick, J.M., et al. Image registration, section 8.5.1.

In this section, you will implement two such image similarity metrics: correlation and mutual information. The com-
putation of the mutual information between two images relies on their joint histogram, so one of the exercises deals
with the implementation of this intermediate step. In the project work section you will use the similarity metrics to find
the optimal rotation transformation that aligns two images.

Before you start, load your favorite test image in Python. You’re going to use this image to test your implementation.
Some of the examples below assume you work with images of type uint8, i.e. pixel intensities in the [0, 255] range,
but the provided functions are equipped to work with arbitrary image types.

Question 2.1:

How can we measure the quality of a registration task? Which consideration is important when selecting target points
for which we measure registration performance?

Type your answer here

2.0 Sum of square differences

Let 𝐼 and 𝐽 be two images and 𝑖 the pixel locations. A simple and intuitive intensity-based measure of the similarity
of 𝐼 and 𝐽 is the sum of squared differences (SSD). The SSD will be equal to zero provided that both images are
correctly aligned, and will grow with increasing registration error (misalignment). If 𝐼 is the fixed image in a registration
problem, and 𝐽 is the moving image transformed with a transformation 𝑇 , the similarity measure will be a function of
the transformation. It can be shown that this measure is optimal when two images differ only by Gaussian noise. This is
an implicit assumption of this measure, which does not hold for inter-modality registration, and is rarely true for intra-
modality registration (e.g. MRI noise is non-Gaussian due to artifacts, which leads to changes between acquisitions,
etc.). Nevertheless, SSD can still be successfully used in intra-modality registration. A possible drawback of this

38 Chapter 1. Interactive notebooks

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

similarity measure is that it can be sensitive to “outlier” intensity differences. An SSD algorithm can be denoted as
finding the transformation T to minimize for images 𝐼 and 𝐽 :

SSD =
∑︁
𝑖

|𝐼(𝑖)−𝐵′(𝑖)|2 ∀ 𝑖 ∈ 𝐴 ∩𝐵′

(1.23)

2.1. Normalized cross-correlation

Another measure making slightly less assumptions is called (normalized) cross-correlation (CC). Normalized CC as-
sumes there is a linear relationship between pixel intensities in two images, which frequently is the case for registration
of images acquired with the same modality. The normalized cross-correlation between two images 𝐼 and 𝐽 with pixels
𝑖 and respective mean intensities 𝐼 and 𝐽 is:

𝐶 =

∑︀𝑛
𝑖=1(𝐼(𝑖)− 𝐼)(𝐽(𝑖)− 𝐽)√︁∑︀𝑛

𝑖=1(𝐼(𝑖)− 𝐼)2
∑︀𝑛

𝑗=1(𝐽(𝑖)− 𝐽)2
(1.24)

where 𝑛 is the number of image pixels. If we reshape the 2D images to vectors (in Python this can be done with
numpy.reshape()), the expression for the normalized cross-correlation can be rewritten using vector multiplication
operators (which will also make it more clear how to implement it in Python):

𝐶 =
(u− 𝐼)⊤(v − 𝐽)√︁

(u− 𝐼)T(u− 𝐼)
√︁

(v − 𝐽)T(v − 𝐽)
(1.25)

where u and v are vectors of the pixels intensities of the images 𝐼 and 𝐽 , respectively:

𝑢 =

⎡⎢⎢⎢⎣
𝐼(1)
𝐼(2)

...
𝐼(𝑛)

⎤⎥⎥⎥⎦ , 𝑣 =

⎡⎢⎢⎢⎣
𝐽(1)
𝐽(2)

...
𝐽(𝑛)

⎤⎥⎥⎥⎦ (1.26)

Exercise 2.1.1:

The provided function correlation() in SECTION 3 of the registration.py module contains a template for im-
plementing the normalized cross-correlation metric. Most of the functionality such as parameter checking and pre-
processing of the images is already implemented. The only piece of code that is missing is the computation of the
normalized cross-correlation using the equation above.

Implement the missing functionality in the correlation() function. Note that the mean intensity is already subtracted
from the images.

1.4. Topic 1.3: Image similarity metrics 39

Medical Image Analysis (8DC00), Release v0.1

Exercise 2.1.2:

Test your implementation using the template correlation_test() script provided in SECTION 3 of the
registration_tests.py module. For example, you can make sure that correlation(I,I), i.e. the normalized
cross-correlation of any image with itself, returns 1. Use some other properties of normalized cross-correlation in order
to further test your implementation. (Tip: How does a linear transformation of the intensities of the images affect the
normalized cross-correlation coefficient?)

[2]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import correlation_test

correlation_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[2], line 4
from registration_tests import correlation_test

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

Question 2.1.1:

Under which assumptions is the normalized cross-correlation the optimal similarity metric?

Type your answer here

2.2. Joint histogram

The joint_histogram() function in SECTION 3 of the registration.py module contains an almost complete
implementation of computation of the joint histogram of two images. We use the joint histogram as an estimate of the
joint probability mass function (PMF) of two images. This function informs us of the probability that two intensities
co-occur (appear together) at the same location in the two images.

40 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Exercise 2.2.1:

Go over the implementation and make sure you understand the functionality of all the steps in the code. Implement the
last missing step in the computation of the joint histogram.

Question 2.2.1:

One of the parameters of the function is num bins, which defines the number of bins of the joint histogram. The default
value for this parameter in this implementation is chosen to be 16. We mostly work with 8-bit images that have 256
possible values for the pixel intensities, which means that num bins can go as high as 256. However, there is a trade-off
between choosing num bins too low or too high. What is this trade-off?

Type your answer here

2.3 Mutual Information

Compared to the above measures, mutual information (MI) makes very few a priori assumptions about registered
objects, which is why it can be applied to larger dimensional registration and many other imaging situations.

Intuitively, MI tries to find out how much information we have about the pixel intensity at the same location in image
𝐽 provided that we know the pixel intensity value at some location in the fixed image 𝐼 . MI is therefore essentially a
reduction in the uncertainty of 𝑌 due to the knowledge of 𝐼 . Given the joint PMF of two images and the two marginal
PMF’s, the mutual information between the two images can be computed with the following formula:

𝑀𝐼(𝐼, 𝐽) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝𝐼,𝐽(𝑖, 𝑗) log
𝑝𝐼,𝐽(𝑖, 𝑗)

𝑝𝐼(𝑖)𝑝𝐽(𝑗)
(1.27)

The unit of MI depends on the particular log function: when using the natural logarithm, the unit is nats, when using
base 2 logarithm, the unit is bits. In its essence, MI is a measure of the “compactness” of the joint PMF of two images.
When the two images are well registered, the joint PMF is compact. When the two images are not well aligned the joint
PMF is “spread out”.

Remember that the joint histogram is an estimate of the joint PMF. Thus, in the previous equation, we can “plug in”
the joint histogram for 𝑝𝐼,𝐽 , and analogously, the marginal histograms (the histograms of the individual images) for 𝑝𝐼
and 𝑝𝐽 . The two sum operators go over all bins in the joint histogram.

Exercise 2.3.1:

A template for implementation of mutual information given a joint histogram of two images is given in the Python func-
tion mutual_information() in SECTION 3 of the registration.py module. As before, the file already contains
all the pre-processing steps but the actual computation of the mutual information is missing. The only missing piece
of code in the template file is implementation of the above formula for mutual information. Implement the missing
functionality.

1.4. Topic 1.3: Image similarity metrics 41

Medical Image Analysis (8DC00), Release v0.1

Exercise 2.3.2:

Use some of the properties of mutual information to test your implementation. Write these tests in the provided
mutual_information_test() script in SECTION 3 of the registration_tests.py module. (Tip: What would
be the mutual information of two random noise images? You can generate random noise uint8 images with np.
random.randint(255, size=(512, 512)))

[3]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import mutual_information_test

mutual_information_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[3], line 4
from registration_tests import mutual_information_test

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

Exercise 2.3.3:

An alternative formula for mutual information is:

𝑀𝐼(𝐼, 𝐽) = 𝐻(𝐼) +𝐻(𝐽)−𝐻(𝐼, 𝐽)

In the previous equation, 𝐻(𝐼) and 𝐻(𝐽) is the entropy of the images 𝐼 and 𝐽 and 𝐻(𝐼, 𝐽) is their joint entropy.

Find out the equation for the entropy and implement mutual information, using this formula, in the
mutual_information_e() function in SECTION 3 of the registration.py module. Test your implementation
with the provided mutual_information_e_test() script. Make sure that both implementations output equal values
(very small differences are possible due to rounding errors).

[4]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import mutual_information_e_test

mutual_information_e_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

(continues on next page)

42 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[4], line 4
from registration_tests import mutual_information_e_test

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

Question 2.3.1:

When is mutual information preferable over sum of squared errors and normalized cross-correlation as an image simi-
larity metric? Motivate your answer.

Type your answer here

Question 2.3.2:

The output of mutual_information() is described as “mutual information in nat units”. What change in the code
would you have to make to output the mutual information in bits? Does it make a difference which units you output
when you use the mutual information metric in practice (for example, to perform image registration)?

Type your answer here

1.5 Topic 1.4: Intensity-based registration

This notebook combines theory with exercises to support the understanding of intensity-based registration in medical
image analysis. Implement all functions in the code folder of your cloned repository, and test it in this notebook after
implementation by importing your functions to this notebook. Use available markdown sections to fill in your answers
to questions as you proceed through the notebook.

Contents:

1. Intensity-based registration

2. Optimization for intensity-based registration

• Gradient ascent/descent

3. Intensity-based similarity metrics (exercises)

3.1 Numerical differentiation

3.2 Similarity as a function of image transformation

3.3 Similarity as a function of rotation

1.5. Topic 1.4: Intensity-based registration 43

Medical Image Analysis (8DC00), Release v0.1

References:

[1] Intensity-based registration: Fitzpatrick, J.M., et al. Image registration, chapter 8.5

[1]: %load_ext autoreload
%autoreload 2

1.5.1 1. Intensity-based registration

Besides points and surface features, image intensity is an alternative registration basis. It is even the most widely
used registration basis. In general, the term intensity refers to scalar values of image pixels or voxels, which are used
to calculate transformations between two images. Compared with point-based registration, intensity-based registra-
tion (Fitzpatrick, J.M., et al. Image registration, chapter 8.5) requires less user interaction as it works by iterative
optimization of an intensity-based similarity measure (the concepts of similarity measures are explained in notebook
1.3_Registration_image-similarity-metrics). When one of the images is being transformed, the similarity measures are
a function of the image transformation. This is “step 1” in our general approach to registering two images. “Step 2” is
finding the parameters that find the transformation that maximizes the similarity between two images.

Intensity-based registration methods are relatively easy to automate and require few manual steps. However, their
application is restricted to a limited range of images given the need for image preprocessing. Algorithms exploiting
intensity-based image registration can be used for various purposes: registration of images with different dimensional-
ity; intermodal and intramodal registration; and registration involving complex transforms, to name some.

1.5.2 2. Optimization for intensity-based registration

General procedure for maximizing similarity functions is:

1. Start with some initial values for the parameters (e.g. transformation 𝑇).

2. Slightly update the parameters in such a way that the similarity will slightly increase.

3. Repeat until the similarity stops increasing.

Gradient ascent / descent:

To optimize similarity functions in intensity-based registration, we typically use gradient ascent (to localize function
maximum) or gradient descent (to localize function minimum). In other words, these numerical methods help us find
the minimum of the error or the maximum of the similarity in registration. To find the minimum and maximum of a
function, we can compute the derivative and set it to zero (in case of more variables, set all partial derivatives to zero).

Gradient ascent algorithm for maximizing a function 𝑓(w):

1. Choose some initial values of the parameters w

2. Calculate the value for the gradient of 𝑓(w) for the current parameters

3. Update the parameters in the direction of the gradient: w← w+𝜇∇w𝑓(w)

44 Chapter 1. Interactive notebooks

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.5408&rep=rep1&type=pdf

Medical Image Analysis (8DC00), Release v0.1

If we want to minimize the function we move in the direction opposite of the gradient (gradient descent): w ←
w−𝜇∇w𝑓(w)

The parameter 𝜇 is called learning rate. It controls how fast we move towards the maximum (minimum). If 𝜇 is too
small, the maximum (or minimum) might not be reached in reasonable time. If 𝜇 is too large, the maximum (minimum)
might be missed. Initialization is important. Different starting points will result in different found maxima (and not
always global).

1.5.3 3. Intensity-based image registration (exercises)

3.1 Numerical differentiation

Numerical differentiation refers to finding the value of a derivative of a given function at a given point without the need
to analytically differentiate the function. This technique can be very useful, for example, when the analytical expression
for the derivative is too complex and computationally expensive to evaluate. In such a case it might be significantly
faster to approximate the derivative instead of computing its exact value.

A simple expression that approximates the derivative of a function 𝑓(𝑥) is:

𝑑

𝑑𝑥
𝑓(𝑥) ≈ 𝑓(𝑥+ ℎ)− 𝑓(𝑥)

ℎ
(1.28)

where ℎ is some very small positive number. When ℎ approaches zero this expression becomes the true value of the
derivative:

𝑑

𝑑𝑥
𝑓(𝑥) = lim

ℎ→0

𝑓(𝑥+ ℎ)− 𝑓(𝑥)

ℎ
(1.29)

A better approximation of the derivative is the symmetric difference quotient given by the following expression:

𝑑

𝑑𝑥
𝑓(𝑥) ≈

𝑓
(︀
𝑥+ ℎ

2

)︀
− 𝑓

(︀
𝑥− ℎ

2

)︀
ℎ

(1.30)

Numerical differentiation can also be used to approximate the partial derivatives of a function with more than one
variable, for example:

𝜕

𝜕𝑥
𝑓(𝑥, 𝑦) ≈

𝑓
(︀
𝑥+ ℎ

2 , 𝑦
)︀
− 𝑓

(︀
𝑥− ℎ

2 , 𝑦
)︀

ℎ
(1.31)

𝜕

𝜕𝑦
𝑓(𝑥, 𝑦) ≈

𝑓
(︀
𝑥, 𝑦 + ℎ

2

)︀
− 𝑓

(︀
𝑥, 𝑦 − ℎ

2

)︀
ℎ

(1.32)

and in turn the gradient:

𝑓(𝑥, 𝑦) =

[︂ 𝜕
𝜕𝑥𝑓(𝑥, 𝑦)
𝜕
𝜕𝑦𝑓(𝑥, 𝑦)

]︂
≈

⎡⎣ 𝑓(𝑥+ℎ
2 ,𝑦)−𝑓(𝑥−ℎ

2 ,𝑦)
ℎ

𝑓(𝑥,𝑦+ℎ
2)−𝑓(𝑥,𝑦−ℎ

2)
ℎ

⎤⎦ (1.33)

1.5. Topic 1.4: Intensity-based registration 45

Medical Image Analysis (8DC00), Release v0.1

Exercise 3.1.1:

In the provided template for the ngradient() function in SECTION 4 of the registration.py module, implement
the computation of the gradient of a function with numerical differentiation using the symmetric difference quotient.

Exercise 3.1.2:

Test your implementation of ngradient(). An easy way to test this function is to numerically compute the gradient
and then verify with the analytical expression. For example, since 𝑑

𝑑𝑥𝑒
𝑥 = 𝑒𝑥 the the numerical derivative 𝑑

𝑑𝑥𝑒
𝑥 should

have approximately the same value as 𝑒𝑥. Write your test cases in the provided ngradient_test() script in SECTION
4 of the registration_tests.py module.

[2]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import ngradient_test

ngradient_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[2], line 4
from registration_tests import ngradient_test

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

Question 3.1.1:

The ndgradient() function can be used to perform optimization with the gradient ascent/descent method. Describe
in short how this algorithm works. What is the role of the learning rate parameter in gradient descent/ascent?

Type your answer here

46 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

3.2 Similarity as a function of image transformation

In the previous section, you have analyzed how the similarity between two images changes as a function of the rotation
of one of the images. The goal of this exercise is to write a Python function that, given two images and the parameters
of some transformation between them, will output the similarity measure. This function can then be used in combi-
nation with ndgradient() from the previous exercise to perform gradient based optimization of the transformation
parameters.

The function rigid_corr() in SECTION 4 of the registration.py module computes the normalized cross-
correlation between a fixed and a moving image transformed with rigid transformation. The three parameters of the
rigid transformation (rotation angle and 2D translation vector) are passed to the function as a vector x.

Here is an example of how to use this function to numerically compute the derivative for a set of parameters:

import numpy as np
import matplotlib.pyplot as plt
from registration_utils import ngradient

I = plt.imread('some_fixed_image.tif')
Im = plt.imread('some_moving_image.tif')

create an instance of rigid_corr for this particular pair of images
rigid_corr_I_Im = lambda x: rigid_corr(I, Im, x)

x = [np.pi/4, 10/100, 20/100]

computes the numerical gradient at x
g = reg.ndgradient(rigid_corr_I_Im, x)

In this code snippet, we first create an instance of the function rigid_corr() where the first to input parameters (the
fixed and moving image) are preset. The new function rigid_corr_I_Im() now has only a single input parameter -
the vector x that stores the rotation angle and the translation. rigid_corr_I_Im() can be used with ndgradient()
to compute the gradient of the similarity function at a particular point (in this example for the point x = [pi/4,
10/100, 20/100]).

Question 3.2.1:

Let’s assume that after executing this code snippet, the computed value for the derivative at point x = [pi/4, 10,
20] is g = [10, -5, 30]. Will increasing the rotation angle (the first parameter of x) by a very small amount
increase or decrease the similarity between the fixed and transformed moving image? Motivate your answer.

Type your answer here

1.5. Topic 1.4: Intensity-based registration 47

Medical Image Analysis (8DC00), Release v0.1

Exercise 3.2.1:

Using rigid_corr() as an example, implement the following two functions in SECTION 4 of the registration.py
module:

1. affine_corr() that computes the normalized cross correlation for a pair of images as a function of affine
transformation, and

2. affine_mi() that computes the mutual information between a pair of images as a function of affine transfor-
mation.

The only thing that you need to change is the length of the parameter vector, which for affine registration should
contain the rotation, scaling, shearing and translation parameters, the computation of the transformation matrix and for
affine_mi() the function call that computes the similarity measure.

3.3 Similarity as a function of rotation

Let’s put the implementations of correlation and mutual information functions to some use. You are going to
compute the similarity between an image and a rotated version of that image for different rotation angles. The
registration_metrics_demo() Python function contains code for performing this analysis. Study the function
and make sure you understand what it does (you can skip the part about visualization of the results).

Exercise 3.3.1:

Run the demo and describe and analyze the results.

[3]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_tests import registration_metrics_demo

registration_metrics_demo()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[3], line 4
from registration_tests import registration_metrics_demo

File ../code/registration_tests.py:144
def ls_affine_test():
^

IndentationError: expected an indented block

48 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 3.3.1:

Run the demo again but this time compute the similarity of the T1w image with a rotated version of the T2w image for
different angles (note that the T1w and T2w images in this example are registered). Describe and analyze the results.
Would the normalized cross-correlation metric be suitable to register the T1w and T2w images? Which of the two
analyzed metrics would be more appropriate? Motivate your answer.

Type your answer here

1.6 Topic 1.5: Validation in medical image analysis

This notebook combines theory with questions to support the understanding of validation metrics in medical image
analysis. Use available markdown sections to fill in your answers to questions as you proceed through the notebook.

Contents:

1. Validation (concepts)

1.1 Quality characteristics

• Accuracy (bias)

• Precision (variation), reproducibility, reliability, replicability

• Robustness

• Efficiency

• Fault detection

1.2 Ground truth

• Ground truth from real data

• Ground truth from phantoms

• Data representativeness

• Statistical significance

1.3 Measures of quality

• Segmentation - quality measures

• Registration - quality measures

• (Computer-aided) detection - quality measures

2. Common limitations of performance metrics in biomedical image analysis

• Small structures

• Image artifacts

• Overlap measurements

• Over- and undersegmentation

• Single-object bias

• Metric combination

• Choosing the right metric for a given task

1.6. Topic 1.5: Validation in medical image analysis 49

Medical Image Analysis (8DC00), Release v0.1

References:

[1] Measures of quality: Toennies Klaus, D. Guide to Medical Image Analysis - Methods and Algorithms, Chapter
13.1

[2] Ground truth: Toennies Klaus, D. Guide to Medical Image Analysis - Methods and Algorithms, Chapter 13.2

[3] Limitations of performance metrics: Reinke et al. Common Limitations of Image Processing Metrics: A Picture
Story.

[4] Assessment of registration errors: Fitzpatrick, M. Visualization, Image-Guided Procedures and Modeling,
7261:1–12, SPIE Medical Imaging (2009).

[1]: %load_ext autoreload
%autoreload 2

1.6.1 1. Validation (concepts)

Validation of medical image analysis methods is the estimation of correctness of certain results from tests of a method
on a representative sample set. In e.g. software design, validation is the evaluation of the degree to which user needs
(performance requirements) are met, i.e. whether the right software is being built. In medical image analysis, we usually
talk about technical validation, where the aim is to evaluate the performance of computing algorithms with respect to e.g.
segmentation accuracy. Validation is used in various image computing classes (registration, segmentation, detection,
classification, quantification).

Prior to performing validation, suitable data needs to be selected, comparison measures need to be chosen, and a
norm (e.g. ground-truth, explained below) needs to be defined. Remember that every validation study must have
a hypothesis on performance (e.g. outcome is better than. . .), and a ground truth (gold standard) is essential.
Validation can provide information about our method with respect to another method used to generate the same results
(cross-validation). It is mandatory to document a detailed description of the validation procedure together with a well-
founded justification of selected measures, as it allows potential new users of the method to investigate the validity of
the arguments used to build the validation scenario.

1.1 Quality characteristics

There are a number of quality characteristics used in validation of medical image analysis methods:

Accuracy (bias)

Accuracy determines the deviation of results from known ground truth. It is computed via a measure of quality (section
1.3) comparing results with some norm. Accuracy is calculated as the ratio between true/false positives and negatives:
A = (TP+TN)

(TP+FP+FN+TN) .

50 Chapter 1. Interactive notebooks

https://link.springer.com/book/10.1007/978-1-4471-2751-2
https://link.springer.com/book/10.1007/978-1-4471-2751-2
https://link.springer.com/book/10.1007/978-1-4471-2751-2
https://arxiv.org/abs/2104.05642
https://arxiv.org/abs/2104.05642
https://spie.org/Publications/Proceedings/Paper/10.1117/12.813601
https://spie.org/Publications/Proceedings/Paper/10.1117/12.813601

Medical Image Analysis (8DC00), Release v0.1

Precision (variation), reproducibility, reliability, replicability

These characteristics measure the extent to which equal or similar input produces equal or similar results. Reliable
methods produce output within a given range of variation (e.g. in terms appearance). A method is reproducible, if two
runs of this method with the exact same input and setup produce the exact same results. Replicability of a method can
be determined if two runs of a method with the same input and same setup arrive at similar conclusions.

Robustness

Robustness of a method characterizes the change of the quality of an analysis result if conditions deviate from assump-
tions made for analysis (e.g., when noise level increases or if object appearance deviates from prior assumptions). For
example, robustness of a segmentation algorithm is the ability of an algorithm to persist in sufficient performance de-
spite abnormalities in the input images (e.g. due to patient motion). Reproducibility and robustness are also important
performance indicators in case of varying image data (different scanners, hospitals, patient populations, etc.).

1.6. Topic 1.5: Validation in medical image analysis 51

Medical Image Analysis (8DC00), Release v0.1

Efficiency

The effort which must be exerted to achieve an analysis result is described by efficiency. You may recall that there are
semi-automated methods that require some degree of human interaction or expert knowledge. These factors contribute
to the overall determination of a method’s efficiency.

Fault detection

The ability to discover possible faults while an analysis method is being applied is called fault detection. It is a very
useful feature, because it requires the method to test for reliability of its own results.

1.2 Ground truth

You may remember one of the lecture slides with the following statement: “In medical image analysis, the truth is
difficult to come by, since the reason for producing images in the first place was to gather information about the human
body that cannot be accessed otherwise.”.

Ground truth is a conceptual term relative to the knowledge of the truth concerning a specific question (the “ideal
expected result”). In validation, all measures of quality estimation for an analysis method require comparison of the
method’s produced results with the true information. Ground truth data can be either real or artificial, however, it is
never completely certain whether selected data are representative of the desired ground truth. See also chapter 13.2 of
the Guide to Medical Image Analysis by Tonnies, Klaus D

Ground truth from real data

Ground truth based on real data can be created by applying the currently established best method to it if such method ex-
ists at all. An example is the use of mutual information and spline-based non-rigid registration for registering MR brain
images. An often encountered problem is proving that the conditions under which a standard is applied, are comparable
with those conditions under which they are considered to be an established standard. Moreover, the implementation
of the established methods is rarely available, even though these days, more implementations become open-source or
integrated in widely used freely downloadable software packages.

If an established method is missing, human experts may help produce ground truth data through manual data annota-
tion. This approach requires a lot of effort both from the method’s developer, as well as the expert who has to carry
out the analysis on several datasets, document findings, and sometimes it is desirable to have the expert analyze the
data(sets) multiple times (intra-observer variability) to increase the significance of the results. The developer must
provide a sufficiently good user interface for the expert to avoid bias by the input component quality. Sometimes it
may be more beneficial to ask more experts and measure (inter-observer) variability. In such case, it is crucial to define
what is meant by agreement among all (e.g. agreement by all / the majority of observers, etc.).

An algorithm for the validation of image segmentation that estimates reference standard based on a set of segmentations
is called STAPLE (Simultaneous Truth and Performance Level Estimation).

52 Chapter 1. Interactive notebooks

https://www.springer.com/gp/book/9781447160960
https://www.springer.com/gp/book/9781447160960
https://pubmed.ncbi.nlm.nih.gov/15250643/

Medical Image Analysis (8DC00), Release v0.1

Ground truth from phantoms

Phantoms can be used as ground truth as well. They are classified as follows:

Based on real data

• cadaver phantoms (human or animal)

• artificial hardware phantoms (e.g. CT and MRI slices generated in the Visible Human Project)

Based on simulated data

• software phantoms representing the reconstructed image or the imaged measurement distribution

• mathematical simulations (e.g. Shepp-logan phantom)

Phantoms are characteristic for specific properties (material, measurement properties, influences from image recon-
struction, shape properties), according to which they are applied in different tasks. Phantoms are only useful in valida-
tion analyses when results have been generated in them. For a detection task, a couple of locations must be specified,
and for registration tasks, fiducial markers have to be implanted, for example. Material and measurement properties
are often idealized. Image artefacts are typically simulated, e.g. by using zero-mean Gaussian noise to simulate de-
tector noise; smoothing data to evoke partial volume effects or through inclusion of artificial shading to model signal
fluctuations.

The advantage of a software phantom is that it is more straightforward to account for anatomical variation by creating
several phantoms with different shapes, unlike in hardware phantoms, where anatomical variation can hardly be mod-
elled. Examples of software phantoms include the BrainWeb phantom; the Field II ultrasound simulation program; the
XCAT phantom; or the dynamic MCAT heart phantom simulating a moving heart.

Data representativeness

To make a (ground truth) dataset representative, all data properties that may have an impact on the performance of an
analysis method should be reflected in it. Representativeness can be enforced by:

• separation between test and training data (leave-one-out technique in classification tasks); if optimal parameters
have to be determined for a method, it is unacceptable to validate the results on ground-truth data which has been
used to arrive at the optimal parameter value

• identification of sources of variation (all should be covered by the ground truth data) and outlier detection (experts
can help)

• robustness with respect to parameter variation (e.g. changes in input thresholds)

Statistical significance

While your analysis results may seem satisfactory, there is a chance that they are statistically insignificant due to low
number of samples in your validation set. Significance of an experimental outcome can be indicated by the well-known
𝑝-value. For example, the probability of less than 1% that a result arose by chance would be expressed as 𝑝 < 0.01.
Significance can be calculated via the *Student’s t-test*, which helps you find out if there is a statistical difference
between two compared groups.

1.6. Topic 1.5: Validation in medical image analysis 53

http://vhp.med.umich.edu/
https://towardsdatascience.com/the-statistical-analysis-t-test-explained-for-beginners-and-experts-fd0e358bbb62

Medical Image Analysis (8DC00), Release v0.1

1.3 Measures of quality

Quality is determined by the kind of analysis which has been conducted on a dataset:

Task Quality measure
Segmentation Correspondence between the segmented object and a reference segmentation
Registration Deviation from the correct registration transformation
Computer-aided detection (CAD) Ratio between correct and incorrect decisions

See also chapter 13.1 of the Guide to Medical Image Analysis by Tonnies, Klaus D

Segmentation - quality measures

When segmenting an object in an image, a measure of comparison between some reference 𝑔 (usually a ground truth)
and the segmented object 𝑓 is required. Mutual correspondence may be determined by calculating volumetric overlap,
overlap between object and background or performing distance measurements (of boundary deviations). In 3D cases,
volumetric measurements aim to count the number of voxels in both the segmented object and the reference norm
weighted by the volume covered by each voxel.

Overlaps between objects 𝑓 and 𝑔 can be calculated by measures that count over-segmentation (number of elements)
and under-segmentation.

The next measures often used for quality assessment are Dice similarity coefficient (DSC) a.k.a Sørensen–Dice coeffi-
cient (𝑑), Intersection over union (𝑖) and the Jaccard index (𝑗):

𝑑 =
2|𝐹 ∩ 𝐺|
|𝐹 |+ |𝐺|

, (1.34)

𝑖 =
DSC

2−DSC
, and (1.35)

𝑗 =
|𝐹 ∩ 𝐺|
|𝐹 ∪ 𝐺|

, (1.36)

where 𝐹 ∩𝐺 is the size of elements (voxels) in overlap, and |𝐹 |, |𝐺| are the sizes of individual volumes. The coefficient
is equal to 1 in case of perfect correspondence; otherwise it is smaller than 1. In the medical image analysis community,
the Dice coefficient is more popular, and therefore also more often present in literature.

Neither Dice nor Jaccard indices can be used to measure outliers (e.g. in tasks where organ boundaries are to be
segmented as part of access planning in surgery). In minimally invasive procedures, it is crucial to determine the
deviation of the segmented boundary from the true boundary. This can be done by Hausdorff distance (HD) between
𝐹 and 𝐺. The Hausdorff distance is defined as the maximum of all shortest distances 𝑑 between points in 𝐹 and 𝐺.
Since this measure is highly sensitive to image artefacts, the quantile Hausdorff distance is used, where distances of
largest outliers are averaged. It is computed from a quantile of a histogram of distances from 𝐹 to 𝐺 and from 𝐺 to 𝐹 :

ℎ𝑞 = max(𝑡𝑞(𝑑(𝑓,𝐺)), 𝑡𝑞(𝑑(𝑔, 𝐹)))(1.37)

54 Chapter 1. Interactive notebooks

https://www.springer.com/gp/book/9781447160960

Medical Image Analysis (8DC00), Release v0.1

Registration - quality measures

Registration aims to find a geometric transformation that maps an 𝑛-dimensional image onto another one, bringing
both images into alignment. In case of different dimensionalities of the registered objects, the transformation includes
a projection step of the scene from higher dimension to the scene of lower dimension. The steps to evaluate registration
accuracy when working with point-based registration are explained in section 1 of notebook 1.2.

The quality of a registration method can be measured as the average deviation of known transformation parameters
based on comparisons between vector fields (for non-rigid registration) or differences in global rotation and translation
(for rigid transformation). Another way of assessing quality for a registration task is to compute locations of fiducials
after registration, however, one should never use the same corresponding point pairs/fiducials or image similarity
metric were used for optimization when computing the registration transformation!

We use Fiducial Localization Error (FLE), Fiducial Registration Error (FRE) and Target Registration Error (TRE) to
evaluate registration accuracy:

• FLE quantifies the error in determining the location of a point which is used to estimate the registration transfor-
mation.

• FRE is the error of the fiducial markers following registration, i.e. ||𝑇 (pf) − pm)||, where 𝑇 is the estimated
transformation and pf , pm are the points that were used for estimation.

• TRE computes the error of the target fiducials following registration, i.e. ||𝑇 (pf) − pm)||, where 𝑇 is the
estimated transformation and pf , pm are the points that were not used for estimation.

It is important to remember that FRE should never be utilized as a surrogate for TRE as the two error measures are
uncorrelated given a specific registration task. Typically, we can only estimate the distribution of TRE as it is spatially
varying. A good TRE depends on using a good fiducial configuration. More information on FRE and TRE can be
found in this article.

If the transformation is unknown, image similarity metrics (see notebook 1.3), and the Structural Similarity Index
(SSIM) can be used. The SSIM is a perceptual image quality measure indicating whether two images are very similar
or the same (a value of +1) or very different (a value of −1).

Figure from Guide to Medical Image Analysis - Methods and Algorithms

1.6. Topic 1.5: Validation in medical image analysis 55

https://spie.org/Publications/Proceedings/Paper/10.1117/12.813601?SSO=1
https://link.springer.com/book/10.1007/978-1-4471-2751-2

Medical Image Analysis (8DC00), Release v0.1

(Computer-aided) detection - quality measures

In detection tasks, an object is either found or not found while the object is or is not present in the data. The quality of
detection is measured by sensitivity (a.k.a recall rate) and specificity (a.k.a precision rate):

• True positives (TP) are those detections belonging to the data and rightly resulted as positive.

• True negatives (TN) are those objects not present in the data and rightly resulted as negative.

• False positives (FP) are those objects that do not belong to the data, but were detected as present.

• False negatives (FN) are results that belong to the data, but were classified as absent.

Sensitivity can be calculated as TP
TP+FN , while specificity is defined as TN

TN+FP . A good detection method would
produce as many TP and TN as possible. FPs (e.g. tumor detected, though absent) and FNs (e.g. tumor overlooked)
may have various consequences, and are therefore measured as two types of error (type-I error, and type-II error). The
so-called confusion matrix listing detection results in an organized way, specifies a two-class classification problem:

Figure from Guide to Medical Image Analysis - Methods and Algorithms

These metrics are commonly used in detection tasks involving medical images. Interestingly, they are also very impor-
tant when interpreting the performance of any test (e.g., airport security, breast cancer screening, quality assurance in
companies, etc.).

In practice, a trade-off between specificity and sensitivity is often targeted. In detection tasks, the ratio of sensitivity
versus specificity is measured by the receiver operator characteristic (ROC). The ROC curve can also serve as a measure
of human operator performance when several operators performed the same task.

Figure from Guide to Medical Image Analysis - Methods and Algorithms

56 Chapter 1. Interactive notebooks

https://link.springer.com/book/10.1007/978-1-4471-2751-2
https://link.springer.com/book/10.1007/978-1-4471-2751-2

Medical Image Analysis (8DC00), Release v0.1

1.6.2 2. Common limitations of performance metrics used for segmentation tasks

Recent meta-analytical research has detected major issues in algorithm validation. Most of these flaws are related to the
practical use of some performance metrics in a given analysis task. One of the core issues in medical image analysis is
the choice of inappropriate metrics Maier-Hein, L. et al. (2018). In the same publication, it has been reported that image
segmentation is the most popular of all medical image processing tasks taking into account international challenges.
In these competitions, the chosen metrics significantly influence the rankings of various methods, and it was found out
that researchers are missing guidelines for choosing the right metric for a given problem. More information can be
found in the article Common Limitations of Image Processing Metrics: A Picture Story.

Small structures

It is important to understand the mathematical properties of a metric before applying it to a given task. Segmentation
of small structures, such as brain lesions (e.g. multiple sclerosis) often employs Dice scores, which may not be an
appropriate metric because of the often unknown pathological outlines and high inter-observer variability in such tasks.
The predictions of two algorithms may differ only by one pixel, yet the impact on the Dice score outcome is substantial
(see figure below).

Figure from Common Limitations of Image Processing Metrics: A Picture Story

1.6. Topic 1.5: Validation in medical image analysis 57

https://www.nature.com/articles/s41467-018-07619-7
https://arxiv.org/abs/2104.05642
https://arxiv.org/abs/2104.05642

Medical Image Analysis (8DC00), Release v0.1

Image artifacts

Similar issues may arise in the presence of image artifacts such as noise or errors in reference annotations. As seen in
the figure below, a single erroneous pixel in the reference annotation may lead to a large performance decrease.

Figure from Common Limitations of Image Processing Metrics: A Picture Story

Overlap measurements

In overlap measurements, dedicated metrics are incapable of discovering differences in shapes, which may have huge
impact e.g. on radiotherapy applications. Completely different predictions may therefore lead to the exact same DSC
value.

58 Chapter 1. Interactive notebooks

https://arxiv.org/abs/2104.05642

Medical Image Analysis (8DC00), Release v0.1

Figure from Common Limitations of Image Processing Metrics: A Picture Story

Over- and undersegmentation

In some applications detecting over- and undersegmentation, the DSC metric does not represent these performance
indicators reliably, while HD is invariant to these properties.

Figure from Common Limitations of Image Processing Metrics: A Picture Story

Single object bias

Commonly, segmentation metrics, such as DSC, are applied to detection and localization problems as well. In general,
the DSC tends to be strongly biased against single objects, which is why its application in detection tasks should be
avoided. An example where DSC underperforms, can be seen below.

Figure from Common Limitations of Image Processing Metrics: A Picture Story

1.6. Topic 1.5: Validation in medical image analysis 59

https://arxiv.org/abs/2104.05642
https://arxiv.org/abs/2104.05642
https://arxiv.org/abs/2104.05642

Medical Image Analysis (8DC00), Release v0.1

Metric combination

Metrics are typically combined over all test cases to produce overall ranking. However, this can be detrimental in case
of missing values (NA) and lead to a substantially higher DSC or varying HD compared to setting missing values to
zero. Moreover, a single metric usually does not reflect all important features for algorithm validation. Through the
combination of multiple metrics helps mitigate the problem, it has to be kept in mind that some metrics are mathemati-
cally related to each other, such as DSC and Intersection over union (IoU) (see above). Thus combining related metrics
will not change the ranking, and only metrics measuring different properties should be aggregated.

Choosing the right metric for a given task

The selection of the most appropriate metric depends on your biomedical question and the characteristics of its problem:

• What is the size, volume and shape of structures?

• Are there image artefacts?

• What is the annotation quality?

• Is computation time relevant?

• Is there any reference available?

• Do we prefer higher sensitivity or specificity?

Question 1:

Describe a situation where volume computation would be an appropriate criterion for measuring the quality of a seg-
mentation task. When should it not be used?

Type your answer here

Question 2:

What information about segmentation quality is revealed by the Hausdorff distance? Please describe a scenario where
this measure is important to rate a segmentation method.

Type your answer here

60 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 3:

What needs to be made sure when selecting test data for ground truth?

Type your answer here

Question 4:

Why is it necessary to carry out manual segmentation several times by different and by the same person if it shall be
used for ground truth? How is the information that is gained from these multiple segmentations used for rating the
performance of an algorithm?

Type your answer here

1.7 Project 1: Image registration

Contents:

• Goal

• Deliverables

• Assessment

• Guided project work

A. Getting started

– Dataset

– Selecting corresponding point pairs

B. Point-based registration - Point-based affine image registration - Evaluation of point-based affine image registra-
tion

C. Intensity-based registration - Comparing the results of different registration methods

1.7.1 Goal

Develop Python code for point-based and intensity-based (medical) image registration. Use the developed code to
perform image registration and evaluate and analyze the results.

The dataset you will be using in the first mini-project originates from the MRBrainS medical image analysis challenge.
It consists of 30 traverse slices of MR brain scans with two different sequences: T1-weighted and T2-FLAIR (5 patients
× 3 slices per patient × 2 modalities). Please see the Getting started assignment below for more details on the dataset.

1.7. Project 1: Image registration 61

http://mrbrains13.isi.uu.nl/

Medical Image Analysis (8DC00), Release v0.1

1.7.2 Deliverables

Code and a report describing your implementation, results and analysis. There is no hard limit for the length of the
report, however, concise and short reports are strongly encouraged. Aim to present your most important findings in
the main body of the report and (if needed) any additional information in an appendix. The following report structure
is suggested for the main body of the report:

1. Introduction

2. Methods

3. Results

4. Discussion

The introduction and result sections can be very brief in this case (e.g. half a page each). The discussion section should
contain the analysis of the results. The report must be submitted as a single PDF file. The code must be submitted as
a single archive file (e.g. zip or 7z) that is self-contained and can be used to reproduce the results in the report.

Note that there is no single correct solution for the project. You have to demonstrate to the reader that you understand
the methods that you have studied and can critically analyze the results of applying the methods. Below, you can find
a set of assignments (guided project work) that will help you get started with the project work and, when correctly
completed, will present you with a minimal solution. Solutions which go beyond these assignments are of course
encouraged.

1.7.3 Assessment

The rubric that will be used for assessment of the project work is given in this table

[1]: %load_ext autoreload
%autoreload 2

1.7.4 Guided project work

A. Getting started

As an introduction, you will get familiar with the dataset that will be used in the first mini-project and the control point
selection tool that can be used to annotate corresponding points in pairs of related images. The annotated points can
later be used to perform point-based registration and evaluation of the registration error.

62 Chapter 1. Interactive notebooks

https://github.com/tueimage/8dc00-mia/blob/master/rubric.md

Medical Image Analysis (8DC00), Release v0.1

Dataset

The image dataset is located in the image_data subfolder of the code for the registration exercises and project. The image
filenames have the following format: {Patient ID}_{Slice ID}_{Sequence}.tif. For example, the filename
3_2_t1.tif is the second slice from a T1-weighted scan of the third patient. Every T1 slice comes in two versions:
original and transformed with some random transformation that can be identified with the _d suffix in the filename. This
simulates a registration problem where you have to register two image acquisitions of the same patient (note however
that some of the transformations that were used to simulate the second set of images are not realistic for brain imaging,
e.g. brain scans typically do not encounter shearing between consecutive acquisitions).

Question 1:

With this dataset we can define two image registration problems: T1 to T1 registration (e.g. register 3_2_t1_d.tif
to 3_2_t1.tif) and T2 to T1 registration (e.g. register 3_2_t2.tif to 3_2_t1.tif). Which one of these can be
considered inter-modal image registration and which one intra-modal image registration?

Selecting corresponding point pairs

A function called cpselect is provided to select control points in two different images. This function provides two
numpy arrays of cartesian coordinates, one array for each image, of points selected in the two images. The coordinate
format is a numpy array with the X and Y on row 0 and 1 respectively, and each column being a point.

Calling the function will cause a new interactive window to pop up, where you will see your two images and some
instructions. For convenience, the instructions can also be found below:

• First select a point in Image 1 and then its corresponding point in Image 2. This pattern should be repeated for
as many control points as you need. If you do not follow this pattern, the output arrays will be incorrect.

• Left Mouse Button to create a point.

• Right Mouse Button/Delete/Backspace to remove the newest point.

• Middle Mouse Button/Enter to finish placing points.

Task 1:

Test the functionality of cpselect by running the following code example:

[2]: import sys
sys.path.append("../code")
import registration_util as util

I_path = '../data/image_data/1_1_t1.tif'
Im_path = '../data/image_data/1_1_t1_d.tif'

X, Xm = util.cpselect(I_path, Im_path)

(continues on next page)

1.7. Project 1: Image registration 63

https://github.com/tueimage/8dc00-mia/tree/master/data/image_data

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

print('X:\n{}'.format(X))
print('Xm:\n{}'.format(Xm))

ImportError Traceback (most recent call last)
Cell In[2], line 8

5 I_path = '../data/image_data/1_1_t1.tif'
6 Im_path = '../data/image_data/1_1_t1_d.tif'

----> 8 X, Xm = util.cpselect(I_path, Im_path)
10 print('X:\n{}'.format(X))
11 print('Xm:\n{}'.format(Xm))

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/registration_util.py:77, in cpselect(imagePath1, imagePath2)

74 image2 = plt.imread(imagePath2)
76 #ensure that the plot opens in its own window

---> 77 get_ipython().run_line_magic('matplotlib', 'qt')
79 #set up the overarching window
80 fig, axes = plt.subplots(1,2)

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:2417, in InteractiveShell.run_line_
→˓magic(self, magic_name, line, _stack_depth)
2415 kwargs['local_ns'] = self.get_local_scope(stack_depth)
2416 with self.builtin_trap:

-> 2417 result = fn(*args, **kwargs)
2419 # The code below prevents the output from being displayed
2420 # when using magics with decodator @output_can_be_silenced
2421 # when the last Python token in the expression is a ';'.
2422 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/magics/pylab.py:99, in PylabMagics.matplotlib(self, line)

97 print("Available matplotlib backends: %s" % backends_list)
98 else:

---> 99 gui, backend =␣
→˓self.shell.enable_matplotlib(args.gui.lower() if isinstance(args.gui, str) else args.gui)
100 self._show_matplotlib_backend(args.gui, backend)

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3603, in InteractiveShell.enable_
→˓matplotlib(self, gui)
3599 print('Warning: Cannot change to a different GUI toolkit: %s.'
3600 ' Using %s instead.' % (gui, self.pylab_gui_select))
3601 gui, backend = pt.find_gui_and_backend(self.pylab_gui_select)

-> 3603 pt.activate_matplotlib(backend)
3604 configure_inline_support(self, backend)
3606 # Now we must activate the gui pylab wants to use, and fix %run to take
3607 # plot updates into account

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/pylabtools.py:360, in activate_matplotlib(backend)

(continues on next page)

64 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

355 # Due to circular imports, pyplot may be only partially initialised
356 # when this function runs.
357 # So avoid needing matplotlib attribute-lookup to access pyplot.
358 from matplotlib import pyplot as plt

--> 360 plt.switch_backend(backend)
362 plt.show._needmain = False
363 # We need to detect at runtime whether show() is called by the user.
364 # For this, we wrap it into a decorator which adds a 'called' flag.

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/matplotlib/pyplot.py:271, in switch_backend(newbackend)
268 # have to escape the switch on access logic
269 old_backend = dict.__getitem__(rcParams, 'backend')

--> 271 backend_mod = importlib.import_module(
272 cbook._backend_module_name(newbackend))
274 required_framework = _get_required_interactive_framework(backend_mod)
275 if required_framework is not None:

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓importlib/__init__.py:127, in import_module(name, package)
125 break
126 level += 1

--> 127 return _bootstrap._gcd_import(name[level:], package, level)

File <frozen importlib._bootstrap>:1014, in _gcd_import(name, package, level)

File <frozen importlib._bootstrap>:991, in _find_and_load(name, import_)

File <frozen importlib._bootstrap>:975, in _find_and_load_unlocked(name, import_)

File <frozen importlib._bootstrap>:671, in _load_unlocked(spec)

File <frozen importlib._bootstrap_external>:783, in exec_module(self, module)

File <frozen importlib._bootstrap>:219, in _call_with_frames_removed(f, *args, **kwds)

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/matplotlib/backends/backend_qt5agg.py:7

4 from .. import backends
6 backends._QT_FORCE_QT5_BINDING = True

----> 7 from .backend_qtagg import (# noqa: F401, E402 # pylint: disable=W0611
8 _BackendQTAgg, FigureCanvasQTAgg, FigureManagerQT, NavigationToolbar2QT,
9 FigureCanvasAgg, FigureCanvasQT)
12 @_BackendQTAgg.export
13 class _BackendQT5Agg(_BackendQTAgg):
14 pass

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/matplotlib/backends/backend_qtagg.py:9

5 import ctypes
7 from matplotlib.transforms import Bbox

----> 9 from .qt_compat import QT_API, _enum

(continues on next page)

1.7. Project 1: Image registration 65

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

10 from .backend_agg import FigureCanvasAgg
11 from .backend_qt import QtCore, QtGui, _BackendQT, FigureCanvasQT

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/matplotlib/backends/qt_compat.py:135
133 break
134 else:

--> 135 raise ImportError(
136 "Failed to import any of the following Qt binding modules: {}"
137 .format(", ".join(_ETS.values())))
138 else: # We should not get there.
139 raise AssertionError(f"Unexpected QT_API: {QT_API}")

ImportError: Failed to import any of the following Qt binding modules: PyQt6, PySide6,␣
→˓PyQt5, PySide2

1.7.5 B. Point-based registration

Point-based affine image registration

From the provided dataset for this project, select one pair of T1 image slices (e.g. 3_2_t1.tif and 3_2_t1_d.tif)
and use my_cpselect to select a set of corresponding points. Then, compute the affine transformation between the
pair of images with ls_affine and apply it to the moving image using image_transform.

Repeat the same for a pair of corresponding T1 and T2 slices (e.g. 3_2_t1.tif and 3_2_t2.tif).

Evaluation of point-based affine image registration

Question 2:

Describe how you would estimate the registration error. (Hint: Should you use the same points that you used for
computing the affine transformation to also compute the registration error?) How does the number of corresponding
point pairs affect the registration error? Motivate all your answers.

66 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

1.7.6 C. Intensity-based registration

Comparing the results of different registration methods

The following Python script (provided as intensity_based_registration_demo()) performs rigid intensity-based
registration of two images using the normalized-cross correlation as a similarity metric:

[3]: %matplotlib inline
import sys
sys.path.append("../code")
from registration_project import intensity_based_registration_demo

intensity_based_registration_demo()

NameError Traceback (most recent call last)
Cell In[3], line 6

3 sys.path.append("../code")
4 from registration_project import intensity_based_registration_demo

----> 6 intensity_based_registration_demo()

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/registration_project.py:74, in intensity_based_registration_demo()

71 x += g*mu
73 # for visualization of the result

---> 74 S, Im_t, _ = reg.rigid_corr(I, Im, x, return_transform=True)
76 clear_output(wait = True)
78 # update moving image and parameters

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/registration.py:342, in rigid_corr(I, Im, x, return_transform)
339 SCALING = 100
341 # the first element is the rotation angle

--> 342 T = rotate(x[0])
344 # the remaining two element are the translation
345 #
346 # the gradient ascent/descent method work best when all parameters
(...)
351 # scaled down version of the translation vector to this function
352 # and then scale it up when computing the transformation matrix
353 Th = util.t2h(T, x[1:]*SCALING)

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/registration.py:46, in rotate(phi)

35 def rotate(phi):
36 # 2D rotation matrix.
37 # Input:

(...)
43 # TODO: Implement transformation matrix for rotation.

(continues on next page)

1.7. Project 1: Image registration 67

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

44 #--#
---> 46 return T

NameError: name 'T' is not defined

0 50 100 150 200 250

0

50

100

150

200

250

[0.00000 0.00000 0.00000]

0 25 50 75 100 125 150 175 200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Task 2:

By changing the similarity function and the initial parameter vector, you can also use this script to perform affine
registration and use mutual information as a similarity measure. Do not forget to also change the transformation for the
visualization of the results.

Using the provided dataset and the functions that you have implemented in the exercises, perform the following series
of experiments:

1. Rigid intensity-based registration of two T1 slices (e.g. 1_1_t1.tif and 1_1_t1_d.tif) using normalized
cross-correlation as a similarity measure.

2. Affine intensity-based registration of two T1 slices (e.g. 1_1_t1.tif and 1_1_t1_d.tif) using normalized
cross-correlation as a similarity measure.

3. Affine intensity-based registration of a T1 and a T2 slice (e.g. 1_1_t1.tif and 1_1_t2.tif) using normalized
cross-correlation as a similarity measure.

4. Affine intensity-based registration of two T1 slices (e.g. 1_1_t1.tif and 1_1_t1_d.tif) using mutual infor-
mation as a similarity measure.

5. Affine intensity-based registration of a T1 slice and a T2 slice (e.g. 1_1_t1.tif and 1_1_t2.tif) using mutual
information as a similarity measure.

Describe, analyze and compare the results from each experiment. If a method fails, describe why you think it fails.
Note that you will most likely have to try different values for the learning rate in each experiment in order to find the
one that works best.

68 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

1.8 Topic 2.1: Linear regression

This notebook combines theory with exercises to support the understanding of linear regression in computer-aided
diagnosis. Implement all functions in the code folder of your cloned repository, and test it in this notebook after
implementation by importing your functions to this notebook. Use available markdown sections to fill in your answers
to questions as you proceed through the notebook.

Contents:

1. Linear regression (theory)

2. Implementing linear regression

3. Polynomial regression and model selection

4. k-Nearest neighbor classifier

References:

[1] Schneider, Astrid et al. “Linear regression analysis: part 14 of a series on evaluation of scientific publications.”
Deutsches Arzteblatt international vol. 107,44 (2010): 776-82. LINK

[2] k-Nearest neighbor classifier: LINK

1.8.1 1. Linear regression (theory)

Linear regression is an indispensable tool for statistical analysis and can be considered the most basic building block
of neural networks. In its simplest terms, univariate linear regression helps estimate the association between a con-
tinuous dependent variable (outcome) and an independent explanatory variable (predictor) by fitting a linear equation
to observed data. Multivariate linear regression then uses two or more independent variables to predict certain out-
come. In medical applications, linear regression allows for the identification of prognostically important risk factors
(e.g. weight, blood pressure, etc.).

1.8. Topic 2.1: Linear regression 69

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992018/
https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4

Medical Image Analysis (8DC00), Release v0.1

Figure from Linear Regression Analysis (Deutsches Ärzteblatt International)

The equation for linear regression is expressed as 𝑌 = 𝑎 + 𝑏𝑋 , where 𝑋 is the independent variable and 𝑌 is the
dependent variable. 𝑏 denotes the slope of the linear regression line, and 𝑎 is the intercept (𝑦 at 𝑥 = 0).

To graphically visualize linear relationship and its strength between two variables, a scatterplot is commonly used. A
fitted regression line (via the least squares method) across all data points then shows either an increasing or decreasing
trend. Numerically, the association strength between two variables can be evaluated using the correlation coefficient
(𝑅2), followed by calculating the 𝑝-value to determine statistical significance.

After fitting a regression line to a group of data, deviations from the fitted line to the observed values (the so-called
residuals) allow the observer to inspect the validity of their assumption and accept/reject the hypothesis that a linear
relationship exists.

Computed regression lines may be affected by outliers (data points lying far away from the main data cluster in the
scatterplot). Depending on their position, outliers may have a major impact on the computed trend since these data
points may represent erroneous data. The effect of outliers as well as influential observations (horizontally distant
points) should be properly investigated and such data potentially removed.

70 Chapter 1. Interactive notebooks

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992018/

Medical Image Analysis (8DC00), Release v0.1

1.8.2 2. Implementing linear regression

The optimal parameters of a linear regression model given a training dataset of features X and targets y can be obtained
with the closed-form solution for minimization of the loss function:

𝐽(𝜃) = ‖𝑋𝜃 − 𝑦‖22
∇𝜃𝐽 = 0

𝜃 =
(︀
𝑋⊤𝑋

)︀−1
𝑋⊤𝑦

The function ls_solve() that you have implemented in the point-based registration practical (SECTION 2 of the
registration.py module) can be reused to solve for the parameters 𝜃.

The linear_regression() Python script in SECTION 1 of the cad_tests.py module reads a toy dataset split into
training, validation and testing subsets, computes the parameters of a linear regression model and visualizes the results
for the training and testing datasets. The toy dataset consists of a single feature and a target variable. For example, the
target that we want to predict can be a person’s systolic blood pressure and age can be the single feature that describes
the person. Such a “small” problem is not often encountered in practice but it can be very illustrative for this technique
(in the project work you will work with a more “practical” medical image analysis problem).

The first section of linear_regression() loads the training, validation and testing datasets that will be used for
training and evaluation of the linear regression model. It also shows a plot of the feature vs. the target variable. We
can observe from the plot that the value of the target tends to increase together with the value of the feature.

1.8. Topic 2.1: Linear regression 71

Medical Image Analysis (8DC00), Release v0.1

Question 2.1:

What is role of these three subsets in training and evaluating machine learning models?

Type your answer here

Exercise 2.1:

Implement the missing functionality of linear_regression() that computes the parameters Theta of the linear
regression model. Note that you will have to add a column of all ones to the data matrix, for which you can use the
provided addones() function in the cad_util.py module.

If you have implemented this correctly, the results for the training set should look like in the figure below.

[1]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_tests import linear_regression

E_validation, E_test = linear_regression()

72 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[1], line 4
from cad_tests import linear_regression

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

Exercise 2.2:

How can you compute the error of the linear regression model for the optimal parameters? Implement this at the end
of linear_regression().

[2]: print(E_validation)
print(E_test)

NameError Traceback (most recent call last)
Cell In[2], line 1
----> 1 print(E_validation)

2 print(E_test)

NameError: name 'E_validation' is not defined

1.8.3 3. Polynomial regression and model selection

Suppose that after examining the results from the linear regression model, your conclusion is that a quadratic model
might be a better fit for the data. Instead of a line, the fitted model now resembles a parabola, which is described by
the equation 𝑦 = 𝑎𝑥2 + 𝑏𝑥+ 𝑐.

1.8. Topic 2.1: Linear regression 73

Medical Image Analysis (8DC00), Release v0.1

Exercise 3.1:

Use the existing code for linear regression to implement and evaluate such a model. You can make a copy of
linear_regression() called quadratic_regression() and work there.

If you have implemented this correctly, the results for the training set should look like in the figure below:

[3]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_tests import quadratic_regression

E_validation, E_test = quadratic_regression()
print(E_validation)
print(E_test)

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[3], line 4
from cad_tests import quadratic_regression

File ../code/cad_tests.py:424
(continues on next page)

74 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

Question 3.1:

You now have implemented both linear and quadratic regression. Compare the quadratic regression to the linear re-
gression model. Which model would you choose and why?

Type your answer here

Question 3.2:

After choosing one of the two models, you have to report the error. For which dataset should you report the error?

Type your answer here

1.8.4 4. Nearest neighbor classifier

The 𝑘-Nearest Neighbor is a type of supervised learning algorithm used both in regression and classification tasks (e.g.
to classify a CT or MRI scan as benign or malignant based on given features). Given 𝑁 training vectors, the 𝑘-NN
algorithm tries to predict the class for the test data (e.g. a feature vector c) by calculating the distance between c and
other training points. The variable 𝑘 represents the selected number of points which is closest to c.

1.8. Topic 2.1: Linear regression 75

Medical Image Analysis (8DC00), Release v0.1

Figure from Antony Christopher on K-Nearest Neighbor

In classification tasks, 𝑘-NN algorithm is typically used to identify the category or class of a particular data point (or
dataset) which is newly added to the space of two known categories, e.g. A and B. How does the algorithm determine
the class or category? For a new example with features 𝑥𝑛𝑒𝑤 = [𝑥1, 𝑥2], predict the class ˆ𝑦𝑛𝑒𝑤 as follows:

1. Specify the amount of neighbors 𝑘 (e.g. 5)

2. Compute the distance from the new point to the 𝑘 training samples. The most frequently used distance metric is
the Euclidean distance calculated as 𝑑(𝑥𝑛𝑒𝑤, 𝑥𝑖) =

√︀
(𝑥𝑛𝑒𝑤,1 − 𝑥𝑖,1)2 + (𝑥𝑛𝑒𝑤,2 − 𝑥𝑖,2)2 (Note: another often

used metric is L1-distance)

3. Count the number of data points in each category among the 𝑘 neighbors according to the Euclidean distance,
sort them, and pick the nearest ones

4. Determine the class of the 𝑘 nearest training samples

5. Assign to 𝑥𝑛𝑒𝑤 the majority class of its nearest training samples (neighbors)

6. Algorithm has finished

Now, the question remains how to select the values of 𝑘. In general, the higher the value of 𝑘, the lesser the chance of
erroneous classification. However, one has to keep in mind that every iteration of the distance calculation is computa-
tionally expensive. One cannot select the most applicable 𝑘-value via any pre-defined statistical methods. If we were
to choose the optimal value of 𝑘 based on the performance on the training set, we would always select 𝑘 = 1 since the
training error would be 0. Hence, we need to choose 𝑘 based on the performance on an independent test set. The test

76 Chapter 1. Interactive notebooks

https://medium.com/swlh/k-nearest-neighbor-ca2593d7a3c4
https://iq.opengenus.org/manhattan-distance/

Medical Image Analysis (8DC00), Release v0.1

set should be independent in the sense that the examples that it contains should by no means be related to the ones in
the training set.

1.9 Topic 2.2: Logistic regression

This notebook combines theory with exercises to support the understanding of logistic regression in computer-aided
diagnosis. Implement all functions in the code folder of your cloned repository, and test it in this notebook after
implementation by importing your functions to this notebook. Use available markdown sections to fill in your answers
to questions as you proceed through the notebook.

Contents:

1. Logistic regression (theory)

2. Implementing the components of logistic regression

3. Implementing logistic regression

4. Generalization and overfitting

References:

[1] Peng, Chao-Ying J. An Introduction to Logistic Regression Analysis and Reporting, The Journal of Educational
Research (2002) LINK

[1]: %load_ext autoreload
%autoreload 2

1.9.1 1. Logistic regression (theory)

The logistic regression classifier can be considered as an extension of linear regression. However, logistic regression
predicts whether something is True or False instead of predicting a continuous variable like height, for instance. Instead
of fitting a line to the data, logistic regression fits an “S”-shaped curve (the sigmoid function) ranging from 0 to 1:

Logistic curve thus predicts the probability of an observation being classified into certain group. Logistic regression
tests if a variable’s effect on the prediction is significantly different from 0. Its ability to provide probabilities and clas-
sify new samples using continuous and discrete measurements makes it a popular machine learning approach. Logistic

1.9. Topic 2.2: Logistic regression 77

https://www.tandfonline.com/doi/abs/10.1080/00220670209598786

Medical Image Analysis (8DC00), Release v0.1

regression does not have the same concept of residuals unlike linear regression, i.e. the least squares method cannot be
applied and the correlation 𝑅2 cannot be calculated. Instead, the concept of maximum likelihood is used. In medical
applications, logistic regression serves for mortality prediction in injured patients or as a predictor of developing a
certain disease.

1.9.2 2. Implementing the components of logistic regression

For a binary classification problem (a classification problem with two classes), logistic regression predicts the proba-
bility that a sample x belongs to one of the classes:

𝑝(𝑦 = 1|x) = 𝜎
(︁
𝜃⊤x

)︁
We can view this expression as passing the output from a linear regression model 𝜃ᵀx through the sigmoid function
𝜎(·) that “squashes” the value between 0 and 1 making it possible to be interpreted as a probability.

The loss function for logistic regression is the negative log-likelihood (NLL):

𝐽(𝜃) = −
𝑁∑︁
𝑖=1

𝑦𝑖 log 𝑝 (𝑦 = 1|x𝑖, 𝜃) + (1− 𝑦𝑖) log {1− 𝑝 (𝑦 = 1|x𝑖, 𝜃)}

Compared to linear regression, there is no closed-form solution for the optimal parameters of the model (we cannot set
the derivative of 𝐽(𝜃) to zero and solve for 𝜃). The NLL loss is optimised with the gradient descent method, similar
to intensity-based image registration covered in the Registration topic of this course.

The provided logistic_regression() Python script in SECTION 2 of the cad_tests.py module implements all
necessary steps for training a logistic regression model on a toy dataset. However, the code will not work as is because
two of the functions it depends on (sigmoid() and lr_nll()) are not implemented yet.

Exercise 2.1:

Implement the computation of the sigmoid function in sigmoid() in SECTION 2 of the cad.py module. You will test
your implementation in the next exercise.

Exercise 2.2:

Implement the computation of the negative log-likelihood in lr_nll in SECTION 2 of the cad.py module. You will
test your implementation in the next exercise.

78 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 2.1:

Suppose that you have two logistic regression models that predict 𝑝(𝑦 = 1|x) and a validation dataset with three
samples with labels 1, 0 and 1. The first model predicts the following probabilities for the three validation samples:
0.9, 0.4 and 0.7. The second model predicts 0.7. 0.5 and 0.9. Which of the two models has a better performance on
the validation set? How did you come to this conclusion?

Type your answer here

1.9.3 3. Implementing logistic regression

Exercise 3.1:

The provided logistic_regression() Python script implements all necessary steps for training a logistic regression
model on a toy dataset.

The first part of the script generates and visualizes a dataset for a binary classification problem. The code generates both
a training and a validation dataset, which can be used to monitor for overfitting during the training process. The second
part implements training of logistic regression with stochastic gradient descent. The training process is visualized in
two ways: a scatter plot of the training data along with the linear decision boundary, and a plot of the training and
validation loss as a function of the number of iterations (this is similar to the plot of the similarity vs. the number of
iteration for intensity-baser image registration).

Read through the code and comments and make sure you understand what it does (you can skip the visualization part
as it is not relevant for understanding logistic regression and stochastic gradient descent).

If you have implemented sigmoid() and lr_nll() correctly and run logistic_regression(), the results should
look like on the figure below (it will most likely not be exactly the same as the toy dataset is randomly generated).

1.9. Topic 2.2: Logistic regression 79

Medical Image Analysis (8DC00), Release v0.1

[2]: %matplotlib inline
import sys
sys.path.append("../code")
from IPython.display import display, clear_output, HTML
from cad_tests import logistic_regression

logistic_regression()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[2], line 5
from cad_tests import logistic_regression

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

Question 3.1:

What is the difference between “regular” gradient descent and stochastic gradient descent? What is the advantage of
one over the other?

Type your answer here

Question 3.2:

In the figure above, the training loss curve has a noisy appearance, whereas the validation loss curve is relatively
smooth. Why is this the case (Tip: How will the appearance of the training loss curve change if you increase the batch
size parameter?).

Type your answer here

80 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 3.3:

Based on the training curves in the figure above, would you say that the model has overfitted the training dataset?
Motivate your answer.

Type your answer here

Question 3.4:

Assuming that you have trained a model and are satisfied with the generalization performance, how can you use the
model to predict the class label 𝑦 for an unknown test sample x. (Tip: Remember that the model predicts a probability.
How can this probability be converted to a binary class label?).

Type your answer here

1.9.4 4. Generalization and overfitting

Generalization and overfitting are crucial terms in machine learning algorithms. Generalization describes a model’s
ability to make accurate predictions based on new data previously absent from the training dataset. Model’s gener-
alization capability can be thought of as a success measure in making accurate predictions. However, if a model has
been trained too well on training data, it will make inaccurate predictions on new data. The opposite holds as well.
Underfitting can happen when a model has been trained insufficiently.

In practice, three datasets are used in deep learning research:

1. Training set - The training set is used for training the model (i.e. iteratively updating the network weights to
minimize the error).

2. Validation set - At the inference phase, the validation set is used for two purposes:

• Check for model overfitting: Sometimes the model is able to ‘remember’ all the training examples, which
means that the model will not generalize well to unseen data at the inference phase. Overfitting can be
detected by inspecting the training and validation loss over time. The loss function is often based on the
error between the model prediction and the desired output, this means that you want to minimize the loss
function. As you can see in the figure below, the training and validation loss show the same pattern when
the model is not overfitting (left figure). When the model is overfitting to the training data, you see that the
training and validation loss start to diverge after a certain number of epochs (right figure), this tells you that
the model is not generalizing well to new data.

1.9. Topic 2.2: Logistic regression 81

Medical Image Analysis (8DC00), Release v0.1

• Tuning of model parameters: Many parameters (e.g. number of layers, loss function, learning rate, etc.)
influence the performance of the model for a specific task. The performance can often be measured with a
quantitative metric because the desired output (ground truth) is known for the validation set. By systemat-
ically adapting model parameters and evaluating the performance, the optimal parameters can be chosen.

3. Test set - The test set is used to show the final performance of the model on an unseen set. This performance
can give an indication of how the model will perform when it is implemented in for example the clinic (with the
assumption that the test set resembles the real clinical data in terms of population and acquisition protocol).

1.10 Topic 2.3: Building blocks of neural networks

This notebook combines theory with exercises to support the understanding of fundamental building blocks of neural
networks. Implement all functions in the code folder of your cloned repository, and test it in this notebook after
implementation by importing your functions to this notebook. Use available markdown sections to fill in your answers
to questions as you proceed through the notebook.

Contents:

1. Learning process of a neural network

2. Backpropagation

3. Implementation of a neural network

References:

[1] Deep feedforward networks: LINK

Nowadays most automated medical image analysis tasks are carried out using deep neural networks. These large
networks are often seen as black box models, even though the outputs of the networks can ‘directly’ be calculated from
the inputs. With the simple examples given in this notebook we aim for you to understand how neural networks learn.
After you completed the exercises of this notebook you are able to:

• explain the fundamental principles behind the learning process of a neural network.

• manually train a simple neural network by doing backpropagation.

• implement a small neural network in python that can be used for the CAD project work.

[1]: %load_ext autoreload
%autoreload 2

82 Chapter 1. Interactive notebooks

https://www.deeplearningbook.org/contents/mlp.html

Medical Image Analysis (8DC00), Release v0.1

1.10.1 1. Learning process of a neural network

Let’s first understand how a neural network learns. As humans we are capable of learning many tasks throughout our
lives. For example, we can easily distinguish cats from dogs in a picture, but we were not able to do this as newborns
and we had to learn it along the way. In our upbringing, constant feedback is given by parents and teachers to ensure we
can recognize different animals or objects. Eventually, you simply know which animal you observe by taking a quick
look at the animal. However, when it comes to rare animals, our distinguishing skills are poor since we have not seen
enough examples of these rare animals in our lives.

The working principle of a neural network is similar. During the training process, known data is fed into the neural
network, and the network makes a prediction about what the data represents. Any error in the prediction is used as
feedback. As the training process continues, the network weights are adjusted (using backpropagation) until the network
starts to make accurate predictions. Then, the model can be used to make predictions for unseen images in the inference
stage. The learning process is visualized in the figure below. As you can see, the model is only trained on three classes
of images (triangles, stars and circles), therefore it will never be able to classify other shapes. However, the model is
able to classify a green star as a star, because the training data consists of a large variety of colors, even though a star
with this exact color is not seen during the training stage.

1.10.2 2. Backpropagation

Now that you understand the idea of how a neural network can learn, let’s have a look at the calculus behind the learning
process. As mentioned before, you want to minimize the loss function, which is done by updating network weights in
the backward pass. Backpropagation is carried out by taking small steps in the descending direction of the slope in
the loss function. In this notebook we will walk through an example of backpropagation to understand what is really
happening in the backward pass.

The following videos and book are suggested for a more in-depth explanation of backpropagation:

1. Video 1: What is backpropagation really doing?

2. Video 2: Backpropagation calculus

3. deeplearningbook.org - chapter 6

1.10. Topic 2.3: Building blocks of neural networks 83

https://www.youtube.com/watch?v=Ilg3gGewQ5U&ab_channel=3Blue1Brown
https://www.youtube.com/watch?v=tIeHLnjs5U8&ab_channel=3Blue1Brown
https://www.deeplearningbook.org/contents/mlp.html

Medical Image Analysis (8DC00), Release v0.1

Simple neural network

The neural network that will be used for this backpropagation example is as follows:

This network is used to predict a value of 𝑦, given the input 𝑥, where both 𝑥 and 𝑦 are scalars. This network contains
only one fully connected layer (without a bias), therefore the output can be calculated as 𝑦 = 𝑤 · 𝑥, where 𝑤 is the
network weight. Keep in mind that normally a neural network has millions of weights, but just for the sake of manually
carrying out backpropagation, we use a neural network of one single weight.

Training set

The model needs to be trained to obtain the optimal value for the weight 𝑤. Normally a large training set is used to find
the optimal values for all the weights, but for simplification purposes, our training set consists of a single input-output
pair, which is as follows:

Input (𝑥) Desired output (𝑦)
1.5 0.5

Because this is such an easy example we know that the solution to this optimization problem is 𝑤 = 𝑦
𝑥 = 0.5

1.5 ≈ 0.33.
However, normally neural networks are used for much more complex optimization problems with millions of parameters
(weights) and many more training examples. Therefore, the best solution cannot just simply be calculated like this, and
an iterative training approach is needed where the network weights are optimized one step at a time.

Model initialization

This optimization process predicts the output 𝑦 given an input 𝑥 and a weight 𝑤. The weight 𝑤 is updated such that
the predicted output 𝑦 becomes more similar to 𝑦. To start this optimization process, the model weight 𝑤 is initialized
with a random value, let’s say 0.8. We can now calculate the predicted value (after zero epochs, i.e. at initialization)
of 𝑦, given that 𝑥 = 1.5 and 𝑤 = 0.8:

Epoch Input (𝑥) Desired output (𝑦) Weight (𝑤) Predicted output (𝑦)
0 (init) 1.5 0.5 0.8 1.2

Training & loss function

Now the question is how the model needs to be trained such that the predicted output reaches the desired output of 0.5.
For this training process, a loss function is defined. The model will try to minimize the value of the loss function, and
therefore the loss function gives the model feedback on how the network weights should be updated. The loss function
for this example is defined as the squared difference between the predicted and the desired output:

𝐿 = (𝑦 − 𝑦)2 (1.38)

The loss function with respect to the weight is visualized for the given training pair in the following figure. It can be
seen that the loss function is a parabola with a minimum around 0.33 (green dot), which is in line with the solution we
calculated earlier.

84 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

You can see that for the current weight, 𝑤 = 0.8 (red dot), the loss function is not at the minimum. The backpropagation
algorithm seeks to minimize the loss by descending along the loss function (red arrow), which is called gradient descent.
To take a descending step in the direction of the slope, the derivative of the loss function needs to be calculated.

Exercise 2.1:

• Given the model 𝑦 = 𝑤𝑥 and the loss function 𝐿 = (𝑦−𝑦)2, find the derivative of the loss function with respect
to the weight: 𝜕𝐿

𝜕𝑤 . (Tip: Use the chain rule: 𝜕𝐿
𝜕𝑤 = 𝜕𝐿

𝜕𝑦
𝜕𝑦
𝜕𝑤)

• Fill in the values of the training set: 𝑥 = 1.5 and 𝑦 = 0.5.

Learning rate

After calculating the derivative, the model weight is updated by taking a step along the slope. Therefore, a step size
needs to be formulated with care. If the step size is too small, it will take many steps before the minimum is reached, or
a more complex model can get stuck in a local minimum. But if the step size is too large, the minimum will not exactly
be reached because the red dot ‘bounces’ around the minimum. This step size is usually called the learning rate. For
this example, we take a learning rate (𝑟) of 0.1.

Now the weight can be updated according to the gradient descent and the learning rate as follows:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝑟
𝜕𝐿

𝜕𝑤
(1.39)

After one step (i.e. after one epoch, since we have a training set size of 1), the weight is updated to

𝑤𝑛𝑒𝑤 = 0.8− 0.1
𝜕𝐿

𝜕𝑤
(𝑥 = 1.5, 𝑦 = 0.5, 𝑤 = 0.8) ≈ 0.59, (1.40)

1.10. Topic 2.3: Building blocks of neural networks 85

Medical Image Analysis (8DC00), Release v0.1

Which means that the updated predicted value is: 𝑦 = 0.59 · 1.5 ≈ 0.89.

Exercise 2.2:

Calculate the weights and predicted outputs for the next epochs until the model converges (i.e. the weight is approxi-
mately 0.33). Fill in (and continue) the following table:

Epoch Input (𝑥) Desired output (𝑦) Weight (𝑤) Predicted output (𝑦)
0 (init) 1.5 0.5 0.8 1.2
1 1.5 0.5 0.59 0.89
2 1.5 0.5
3 1.5 0.5

n 1.5 0.5

Question 2.1:

After approximately how many epochs does the model converge?

Type your answer here

Question 2.2:

What is the reason for the fast convergence in the beginning of the training and the slow convergence later on, despite
the fact that the step size (learning rate) is constant?

Type your answer here

Following model training

This process is normally done using python because the model is much more complex and then you want to follow the
training process to know when the model is done training. To know this you can inspect the loss curve during training.

86 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Exercise 2.3:

In the following python cell, the example model is implemented. To run the code, you need to add an extra line in
the model_training() function in SECTION 3 of the cad_tests.py module. Define in the formula of 𝜕𝐿

𝜕𝑤 (𝑤, 𝑥, 𝑦)
which you obtained from the first part of Exercise 2.1. Once you have added the missing line, you can test it below.
Inspect the training curve and check the results of exercise Exercise 2.1 with the table that is printed by this code cell.

[2]: %matplotlib inline
import sys
import matplotlib.pyplot as plt
sys.path.append('../code')

from cad_tests import model_training

model_training()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[2], line 6
from cad_tests import model_training

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

Question 2.3:

What do you think of the training process when looking at the loss plot?

• Do you think the model was trained for enough epochs? Explain your answer.

• Do you think the step size of 0.1 was appropriate for the given model? Explain your answer.

• How could you in a real application (objectively) define when the model finished training?

Type your answer here

1.10. Topic 2.3: Building blocks of neural networks 87

Medical Image Analysis (8DC00), Release v0.1

1.10.3 3. Neural network implementation

Project computer-aided diagnosis (CAD)

Before continuing with the exercises in this notebook, make sure that you have read the description of the CAD project,
especially for the binary classification. You do not need to complete the project before starting the following exercises,
but just read the description to understand the task. The description states that one image has 24 × 24 × 3 = 1728
features, where the factor 3 comes from the RGB channels. Optimally, these features are used in the image space and
captured with a convolutional neural network, but for simplification purposes and carrying out a numpy implementation
we are still going to used these 1728 features flattened in a 1D vector. We will use the following neural network,
consisting of two fully connected layers and their activation functions (sigmoid activation: 𝜎).

As you can see, the number of features decrease every layer. They start at 1728, then go to 1000 and the model outputs
only a single value for a given input. This output is a prediction on whether the nuclei is large (output is 1) or small
(output is 0).

Data loading & preprocessing

To implement a neural network we need the training, validation and test set. In this implementation we will be using a
supervised network, which means we also need labels (whether the nuclei should be classified as large or small). The
following python cell loads the data and applies preprocessing.

88 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Exercise 3.1:

Run the following python cell, try to understand what is happening and inspect the example images. You will find
the definition of the function data_preprocessing() in the Training class of SECTION 3 of the cad_tests.py
module.

[3]: %reset_selective -f regex
import matplotlib.pyplot as plt

from cad_tests import Training
t = Training()

t.data_preprocessing()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[3], line 4
from cad_tests import Training

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

Define initialization values

To train a model, several initialization variables should be defined.

Some values are fixed or are already chosen by us (such as the learning_rate, batchsize and the number of features
in the input, hidden and output layer (in_features, n_hidden_features, out_features, respectively)). This
means that the sizes of the weight matrices can be calculated.

1.10. Topic 2.3: Building blocks of neural networks 89

Medical Image Analysis (8DC00), Release v0.1

Question 3.1:

To understand the size of the weight matrices, we show you a small example of a fully connected network, as can be
seen in the following figure.

For this case, the input features x have the shape [1,5] and the output features ŷ have the shape [1,2]. We also know
that ŷ = xW.

• What is the shape of the matrix W?

• What would happen with the shape of W if a batch of images is given to the network (i.e. shapes of x and ŷ are
[batchsize,5] and [batchsize,2]?

Type your answer here

Exercise 3.2:

Let’s go back to the original nuclei problem with the two layer network. Complete the TODO block of code in the
define_shapes() function in the Training class of SECTION 3 of the cad_tests.py module by defining the
shapes of the weight matrices w1 and w2. When complete, run the python cell below.

[4]: t.define_shapes()

NameError Traceback (most recent call last)
Cell In[4], line 1
----> 1 t.define_shapes()

NameError: name 't' is not defined

90 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Model functions

Several functions need to be defined before implementing the model.

Activation function

As mentioned before, both fully connected layers are followed by a sigmoid activation function, which is defined as:

This activation is used to obtain an eventual output between zero and one, which indicates the probability of a nuclei
being large. Such an activation layer simply maps the pixel intensities (x in the plot above) to another range, and no
model weights are involved in an activaiton layer.

Loss function

The squared difference between the predicted output ŷ and the desired output (the label) y is again used for the loss
function:

𝐿 = (ŷ − y)2 (1.41)

Forward and backward pass

For training the model, we need to apply the forward and backward pass. In a forward pass the prediction ŷ is calculated
for a given input x with the following steps (assume all hidden layers before or after activation h1, h2 and h3):

h1 = xW1 (1.42)

h2 = 𝜎(h1) (1.43)
h3 = h2W2 (1.44)
ŷ = 𝜎(h3) (1.45)

Subsequently the backward pass is carried out for updating the weights such that the loss function decreases. The
derivatives with respect to the two weight matrices W1 and W2 are defined (by the chain rule) as follows:

𝜕L

𝜕W1
=

𝜕L

𝜕ŷ

𝜕ŷ

𝜕h3

𝜕h3

𝜕h2

𝜕h2

𝜕h1

𝜕h1

𝜕W1
= 2(ŷ − y) · 𝜎′(h3) ·W2 · 𝜎′(h1) · x (1.46)

1.10. Topic 2.3: Building blocks of neural networks 91

Medical Image Analysis (8DC00), Release v0.1

𝜕L

𝜕W2
=

𝜕L

𝜕ŷ

𝜕ŷ

𝜕h3

𝜕h3

𝜕W2
= 2(ŷ − y) · 𝜎′(h3) · h2 (1.47)

Exercise 3.3:

The forward pass and the derivatives of the backward pass are implemented in the forward() and backward in
SECTION 3 of the cad_tests.py module, respectively. The model weights are not yet updated, and the new model
weights need to be defined as a function of the old weights (w1 and w2), learning_rate, and the derivatives (dL_dw1
and dL_dw2). Complete the missing implementation. (Tip: Have a look at the first part of this notebook).

Model training & validation

The backpropagation example in the first part of this notebook is based on a single input-label training pair, but this
implementation is based on a training set of 14607 image-label pairs. As discovered in Question 3.1, the number of
examples given as input (in that case either 1 or batchsize) does not affect the size of the weight matrix. Therefore
you can choose to show more image-label pairs at the same time such that less passes are needed to ‘see’ the entire
training set.

For this model we choose a batchsize of 128, which means that 128 image-label pairs are given to the model at a time
and then the model updates its weights according to the losses of these 128 pairs. Subsequently the next batch of images
is given to the model and after batch several iterations the model completed a full epoch where the whole training set
is seen once.

Normally, the model needs to train for many epochs to converge. The function launch_training() in SECTION 3
of the cad_tests.py module implements a training for 100 epochs. As you can see, there are two for-loops: one
for-loop for the epoch and one for-loop for the batch. After every epoch is completed, the validation set is fed through
the network (all at once) to calculate the validation loss and the model performance (accuracy) over time.

Exercise 3.4:

Inspect the launch_training() function of the Training class in more detail, and run the following code cell.
NOTE: It takes some time to do all the calculations.

[5]: import sys
sys.path.append('../code')

t.launch_training()

NameError Traceback (most recent call last)
Cell In[5], line 4

1 import sys
2 sys.path.append('../code')

----> 4 t.launch_training()

NameError: name 't' is not defined

92 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 3.2:

Inspect the results of the training.

• Do you think the model is suitable for this task, and that it is trained well?

• What is remarkable about the loss curves? What is this phenomena called?

• Could you think of solutions for reducing the gap between training and validation loss?

Type your answer here

Final model performance

Inspecting the model’s training and performance on the validation set is useful for making adaptations to your model
to eventually obtain the best model for this task. After the model is fully optimized, you want to present you final
performance on a test set that has not yet been used in the optimization process. In the following Python cell, the
complete test set is fed through the network and the final test accuracy is given. All test predictions are visualized in a
histogram with the color of the given label.

Question 3.3:

Run the following cell below.

• If you completed the entire code correctly a test accuracy of 0.76 is given, did you obtain the same result?

• What is noticeable about the shown histogram?

[6]: t.pass_on_test_set()

NameError Traceback (most recent call last)
Cell In[6], line 1
----> 1 t.pass_on_test_set()

NameError: name 't' is not defined

Type your answer here

1.10. Topic 2.3: Building blocks of neural networks 93

Medical Image Analysis (8DC00), Release v0.1

1.11 Topic 2.4: Unsupervised learning, PCA

This notebook combines theory with code exercises to support the understanding of (un)supervised machine learning
and principal component analysis in computer-aided diagnosis. Please note: Cells in this notebook must be executed
in order as the code often relies on cells run above it!

Contents:

1. Supervised vs. unsupervised learning

• Examples of unsupervised machine learning methods

2. Principal component analysis (theory)

2.1 Motivation

2.2 Basics of PCA

2.3 Dimensionality reduction using PCA

2.4 Intuitive interpretations and principal components

3. Principal component analysis (exercises)

References:

[1] Principal component analysis: Jolliffe, I. T., Cadima J. PCA: a review and recent developments (2016)

[1]: %load_ext autoreload
%autoreload 2

1.11.1 1. Supervised vs. unsupervised learning

While supervised machine learning (e.g. classification or regression) serves to develop a predictive model based on
input and output data (i.e. ground truth, labels), unsupervised machine learning (e.g. clustering or dimensionality
reduction) utilizes machine learning algorithms to cluster unlabeled data by finding hidden patterns without the need
for manual human intervention.

94 Chapter 1. Interactive notebooks

https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2015.0202

Medical Image Analysis (8DC00), Release v0.1

Supervised learning requires a lot of known transformations for training and it is necessary to use ground truth (labels)
to calculate the loss. Supervised machine learning methods can either be fully supervised (e.g. 2D FlowNet or 3D
U-net, mostly patch-based; see generation of ground truth transformations and large deformation diffeomorphic metric
mapping - LDDMM) or weakly supervised, utilizing overlap between segmentations or a similarity metric combined
with ground truth (e.g. registration between ultrasound and MRI images using convolutional neural networks - CNNs
or generative adversarial networks - GANs).

Despite its relative computational complexity due to a high volume of training data, unsupervised learning is widely
used in computer vision tasks (for visual perception and object recognition) as well as in medical imaging to guide radi-
ologists and pathologists towards accurate diagnoses. There is no need for ground truth (labels); instead, unsupervised
methods often use a spatial transformer layer. A spatial transformer is a learnable module that explicitly allows for spa-
tial manipulation of data within a given network. They are differentiable, modularizable for existing neural networks
and serve for active transformation of feature maps.

Examples of unsupervised machine learning methods

1. Variational autoencoders

2. Generative adversarial networks (GANs)

3. Multi-scale methods:

3.1 RegNet

3.2 ConvNet

3.3 pgCNN

3.4 HoVer-Net

4. VoxelMorph (U-net)

1.11. Topic 2.4: Unsupervised learning, PCA 95

https://pubmed.ncbi.nlm.nih.gov/30371358/
https://pubmed.ncbi.nlm.nih.gov/28705497/
https://pubmed.ncbi.nlm.nih.gov/28705497/
https://arxiv.org/abs/1804.11024
https://arxiv.org/abs/1807.03361
https://arxiv.org/abs/1804.07172
https://arxiv.org/abs/1807.07349
https://link.springer.com/chapter/10.1007/978-3-319-66182-7_27
https://arxiv.org/abs/1809.06130
https://pubmed.ncbi.nlm.nih.gov/31751269/
https://arxiv.org/abs/1812.06499
https://arxiv.org/abs/1809.05231

Medical Image Analysis (8DC00), Release v0.1

4.1 Cycle-consistent VoxelMorph

1.11.2 2. Principal component analysis (theory)

This section is meant to teach you about principal component analysis (PCA), a technique that is commonly used in
medical image analysis to reduce the dimensionality of data (for example, features for a classification or segmentation
task).

We will begin with some motivation why PCA (and dimensionality reduction in general) is useful. Next, we will show
PCA applied to a simple Gaussian dataset, and then to the nuclei dataset.

2.1 Motivation

The ultimate goal of any classification/segmentation technique is to use training data to make accurate predictions
about future, unlabeled data. In other words, the goal is to generalize well to new data. This can be achieved by many
different choices for classifiers and many different combinations of features. For example, when tasked with predicting
the systolic blood pressure of a patient given some clinical data, we could use many different clinical values: the low-
density lipoprotein (LDL) blood levels of the patient, their high-level lipoprotein (HDL), but also their age, weight and
height.

Choosing which combination of features to use for a classifier is a non-trivial task, for a variety of reasons:

• For most complex tasks, it is inherently unclear what number of features is ‘enough’.

• It may not always be intuitive what features are actually discriminatory between your classes.

• Increasing the number of features may actually decrease the performance of the classifier.

Figure 2.1.1: As dimensionality (the number of features) increases, a classifier’s performance can increase until some
optimum. Further increasing the dimensionality for the same amount of training samples can result in a decrease in
classifier performance.

96 Chapter 1. Interactive notebooks

https://link.springer.com/chapter/10.1007/978-3-030-32226-7_19

Medical Image Analysis (8DC00), Release v0.1

Curse of dimensionality

It is worth elaborating on the last point: increasing the number of features may inadvertently lower classifier perfor-
mance. This is because of something called the curse of dimensionality. We can illustrate the curse of dimensionality
with a simple example, where we try to classify pictures of dogs from cats using a linear classifier.

In the image below, we show how the feature space of the classifier grows by adding one new feature (dimension) at a
time. You can image that we might begin by classifying dogs from cats by their color, but we find that this doesn’t offer
a linear separability of our dataset (there is no one line we can draw that perfectly separates the two animals). We see
the same for two features (e.g. color and size). However, when we use three features (e.g. color, size and weight), we
can linearly separate the two classes, thus giving us perfect classification accuracy!

Figure 2.1.2: The more features we use, the higher the likelihood we can separate the classes with a hyperplane.

While it looks like adding more features has improved classification performance, this is actually not the case. Con-
sider the ‘density’ of all of the training samples (represented by cat/dog icons) within the feature space: as the number
of dimensions goes up, the feature space becomes increasingly sparse. As you might intuitively feel, it is much easier
to find a hyperplane that splits two classes perfectly in a sparse feature space than in a very densely filled feature space
- there are simply far less constraints on what shape the hyperplane needs to take on. In fact, if you were to take an
infinite amount of features, the probability of a training sample laying on the wrong side of a hyperplane would become
infinitely small and your classification performance on the training samples would be perfect.

In this way, the curse of dimensionality causes overfitting on the training set: the learned hyperplane does not reflect
actual real-world differences between cats and dogs (the test set), but instead reflects the appearance of individual cats
and dogs that just happen to appear in our training set. In this instance, a much better choice would be to do linear
classification on two features: while performance on the training set would be lower, the model would generalize much
better to the new, unseen data of the test set.

1.11. Topic 2.4: Unsupervised learning, PCA 97

Medical Image Analysis (8DC00), Release v0.1

2.2 Basics of PCA

After the cat/dog example, we are left with an obvious question: “if we shouldn’t use too many features due to the curse
of dimensionality, which features should we use?” PCA is often used to determine which features are most suitable for
a classification problem. We begin by illustrating the basic principles of PCA on a Gaussian dataset.

[2]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sys

def plot_data(X, title = None, xlabel = None, ylabel = None, ax = None):

If no pre-existing axis given, make new plot
if ax is None:

fig = plt.figure(figsize = (8,8))
ax = fig.add_subplot(111)
ax.grid()

Plot and format figure
ax.scatter(X[:,0], X[:,1])
ax.set_xlim(-5, 5)
ax.set_ylim(-5, 5)
ax.set_title(title, fontweight = 'bold')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)

def draw_vector(start, end, ax = None):
ax = ax or plt.gca()
arrowprops = dict(arrowstyle = '->',

linewidth = 4,
shrinkA = 0, shrinkB = 0)

ax.annotate('', end, start, arrowprops = arrowprops) # Draw vector from coords␣
→˓(start) to (end)

Our dataset is defined as an 𝑀 -by-2 matrix X containing 𝑀 points sampled from a two dimensional Gaussian 𝒩
with 𝜇1 = 0, 𝜇2 = 0

and a covariance matrix Σ =

(︂
2 1
1 2

)︂
. Because of the covariance matrix, there is a positive skew upwards when

plotting the data.

[3]: n_samples = 1000
X = np.random.multivariate_normal([0,0], [[2,1], [1,2]], n_samples) # Make 2D gaussian␣
→˓dataset
plot_data(X, "A skewed 2D Gaussian distribution", "Feature #1", "Feature #2")

98 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

4 2 0 2 4
Feature #1

4

2

0

2

4

Fe
at

ur
e

#2
A skewed 2D Gaussian distribution

PCA works by finding the ‘principal components’ of an 𝑁 -dimensional dataset (here 𝑁 = 2). One reasonable way to
think of principal components is that they are the directions in which the dataset shows the most variation, i.e. the
largest spread in values. Typically, these directions of large variance are the interesting parts of the dataset: imagine a
dataset with 100 features, 98 of which barely have any spread, and 2 of which show large amounts of variance. You
can intuitively imagine that these 2 features, because of their variance, must have some power to discriminate between
classes.

Principal components are always orthogonal to one another and together form a new basis that we can use to transform
the data. As a result of the transformation, the data will be linearly uncorrelated, meaning the covariance matrix will

be diagonal: Σ =

(︂
𝑎 0
0 𝑏

)︂
, with {𝑎, 𝑏} ≥ 0. This also means that the directions of greatest variances are now aligned

with the axes: the first coordinate is now the first principal component, the second coordinate is the second principal
component, and so on.

1.11. Topic 2.4: Unsupervised learning, PCA 99

Medical Image Analysis (8DC00), Release v0.1

Mathematical background

The process begins by centering the data 𝑋 (𝑀 samples by 2 features) around the origin by subtracting the means of
each variable from that column:

X̂ = X− X̄ (1.48)

We can find the principal components for the matrix X̂ by calculating its covariance matrix Σ and calculating the
corresponding eigenvalues and eigenvectors of Σ. The eigenvectors represent the principal components of the data and
the eigenvalues represent the amount of variance explained by that principle component (proving that this is the case
is outside of the scope of this course).

We can calculate the covariance matrix with the following formula:

Σ =
1

𝑀 − 1
XTX (1.49)

The easiest way to then calculate the eigenvectors and eigenvalues is to factorize Σ using singular value decomposition
(SVD). SVD gives us the following expression:

Σ = UsV (1.50)

where U contains the eigenvectors u(𝑖) in the columns, ordered by largest to smallest variance:

U =

⎡⎣ | | |
u(1) u(2) . . . u(𝑛)

| | |

⎤⎦ (1.51)

and s is a vector containing the eigenvalues 𝜆𝑖:

s = [𝜆1, 𝜆2, . . . 𝜆𝑛] (1.52)

Now, we can simply multiple U with our data X̂ to transform it to the new basis:

XPCA = UTX̂ (1.53)

In code, this looks like the following:

[4]: def pca_transform(X):
n_samples = X.shape[0]

X_mean = np.mean(X, axis = 0)

X_hat = X - X_mean # Center data

sigma_hat = 1/(n_samples-1)*X_hat.T.dot(X_hat) # Calculate covariance matrix,␣
→˓alternative is np.cov(X)

U, s, V = np.linalg.svd(sigma_hat) # Do singular value decomposition to get eigen␣
→˓vector/values

X_pca = U.dot(X_hat.T) # Transform dataset using eigenvectors

return X_pca.T, U, s

X_pca, U, s = pca_transform(X)

We plot the original dataset and the PCA transformed dataset side by side. Superimposed on the plots, we show the
principal components, before and after rotation. Note how the vectors point in the direction of the most variance.

100 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

[5]: fig, axes = plt.subplots(1,2, figsize = (16,8))

X_mean = np.mean(X, axis = 0)

We plot vectors from (X_mean) - i.e. the data center - to (X _mean +␣
→˓sqrt(eigenvalue)*eigenvector)
We use sqrt(eigenvalue) as a scaling factor to show the relative "importance" of the␣
→˓eigenvectors
But note that this has no semantic meaning/significance!

plot_data(X, "Principal components of the skewed Gaussian distribution", "Feature #1",
→˓"Feature #2", axes[0])
draw_vector(X_mean, X_mean + np.sqrt(s[0])*U[:,0], axes[0])
draw_vector(X_mean, X_mean + np.sqrt(s[1])*U[:,1], axes[0])

plot_data(X_pca, "PCA transformed dataset", "Principal component #1", "Principal␣
→˓component #2", axes[1])
draw_vector(X_mean, X_mean + np.sqrt(s[0])*np.array([0,1]), axes[1])
draw_vector(X_mean, X_mean + np.sqrt(s[1])*np.array([1,0]), axes[1])

4 2 0 2 4
Feature #1

4

2

0

2

4

Fe
at

ur
e

#2

Principal components of the skewed Gaussian distribution

4 2 0 2 4
Principal component #1

4

2

0

2

4

Pr
in

cip
al

 c
om

po
ne

nt
 #

2
PCA transformed dataset

1.11. Topic 2.4: Unsupervised learning, PCA 101

Medical Image Analysis (8DC00), Release v0.1

2.3 Dimensionality reduction using PCA

In the previous section, we showed the basic principles of PCA. However, dimensionality reduction is obviously not
very important if you only have two features. PCA becomes much more useful for datasets where there are too many
features to plot in a human understandable way. In that case, we can select only a subset of the first 𝑛 eigenvectors of
matrix U (principal components) to do our transformation with. This means we project the data onto fewer axes and
get a lower dimensional dataset! For example, if we have a 100-dimensional dataset and we choose 𝑛 = 10, we only
take the first 10 columns of U and use this Ureduced to project 100 dimensions onto 10 dimensions.

We usually decide on the number 𝑛 as follows: we ask how many principal components we need to retain :math:`geq
95%` of the dataset’s variance. To reiterate: in dimensionality reduction, we care about retaining as much as the data’s
variance as possible, while using as little dimensions as possible.

We can describe ‘retained variance’ with the eigenvalues of the principal components: for𝑛 vectors and a 𝑘-dimensional
dataset, the retained variance 𝑟 is:

𝑟 =

𝑛∑︁
𝑖=1

𝜆𝑖

⧸︂ 𝐾∑︁
𝑖=1

𝜆𝑖 (1.54)

In other words, we divide the variance that the first 𝑛 principal components retain by the total variance of all principal
components. The variance of a principal component is represented by its eigenvalue.

A graphical example: cell nuclei

Let’s give an example using a high dimensional data set: we use the cell nuclei dataset from the CAD project.

[6]: from scipy.io import loadmat

def plot_series(images, shape = (5,5), stochastic = True):
n,m = shape
ix = np.random.randint(0, images.shape[-1], n*m) if stochastic else np.arange(0, n*m)

fig, axs = plt.subplots(n, m, figsize=(n, m))
axs = axs.ravel()
for i, j in zip(range(n*m), ix):

axs[i].imshow(images[:,:,:,j])
axs[i].axis('off');

return axs

[7]: # Load dataset
fn = '../data/nuclei_data.mat'
mat = loadmat(fn)

images = mat["training_images"] # shape (24, 24, 3, 21910)
images_y = mat["training_y"] # shape (21910, 1)

[8]: # Visualize - randomized, so refresh to see new nuclei!
axs = plot_series(images, shape = (8,8))

102 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

In the CAD project, you must perform linear regression on the raw pixel values of the images to predict the surface area
of nuclei. Here, we don’t do regression, but purely investigate how many principal components we need to properly
represent this high dimensional dataset, for the purposes of dimensional reduction. Because the images are of shape
(24, 24, 3), we get a total of 24× 24× 3 = 1728 features per image. As our training set consists of 21910 images, we
will have a (21910, 1728) shaped dataset X.

[9]: shapes = images.shape
num_features = shapes[0]*shapes[1]*shapes[2]
X = images.reshape(num_features, shapes[3]).T.astype(float)
print("The shape of our dataset X is: ", X.shape)

The shape of our dataset X is: (21910, 1728)

Let’s perform PCA on our dataset and see how many principal components we need to retain 95% of the data variance.

1.11. Topic 2.4: Unsupervised learning, PCA 103

Medical Image Analysis (8DC00), Release v0.1

[10]: X_pca, U, s = pca_transform(X)

Every iteration i, divide variance retained in s[0:i] by total variance
r = np.array([s[0:i].sum() / np.sum(s) for i in range(1, len(s)+1)])
n = np.argmax(r > 0.95)
print("The number of principal components needed to retain 95 percent data variance is:
→˓", n+1)

The number of principal components needed to retain 95 percent data variance is: 132

[11]: plt.figure(figsize = (8,8))
plt.plot(r, 'k--')
plt.plot(range(len(r)), np.ones(len(r)) * 0.95, 'r-')
plt.xlabel("Number of principal components")
plt.ylabel("Retained variance (%)")
plt.text(1728/2, 0.93, "95 percent retained variance", fontweight = "bold")
plt.title("Retained variance as a function of the number of principal components",␣
→˓fontweight = 'bold');

104 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

0 250 500 750 1000 1250 1500 1750
Number of principal components

0.5

0.6

0.7

0.8

0.9

1.0

Re
ta

in
ed

 v
ar

ia
nc

e
(%

)

95 percent retained variance

Retained variance as a function of the number of principal components

Remarkably, we only need 132 principal components (dimensions) to retain 95 percent of our data variance, even for
a 1728 dimensional dataset. We can now easily reduce the dimensionality of our dataset by transforming the data with
the first 132 eigenvectors. In a real scenario, we could now use this transformed dataset to perform regression (and also
classification) techniques on. In general, because of the lower dimensionality, techniques will be less likely to overfit.

[12]: X_hat = X - np.mean(X, axis = 0)
U_reduced = U[0:132]
X_pca = U_reduced.dot(X_hat.T).T # Our new, transformed (and lower dimensional) dataset
print("The new shape of our data matrix now is: ", X_pca.shape)

The new shape of our data matrix now is: (21910, 132)

1.11. Topic 2.4: Unsupervised learning, PCA 105

Medical Image Analysis (8DC00), Release v0.1

2.4 Intuitive interpretations of principle components

Lastly, we show two additional intuitive interpretations of principle components.

We have also established that principle components can be thought of the orthogonal directions of variation in our
dataset. However, beyond just ‘direction’, we can also visualize this variation in the form of an image! Consider the
fact that the eigenvectors are of the shape (1, 1728) and can thus be reshaped back into the original shape of the image,
(24, 24, 3). In this form, the eigenvectors represent the principle modes of variation in the image.

We visualize this with the code in the cell below. Per eigenvector, we reshape the vectors to images (and rescale the
values to [0,255]). The first eigenvector (top left) is a disk, which makes sense: since our dataset depicts nuclei, typically
round, centered objects, the most variation exists in that form. As we go further right and down, this variation becomes
more abstract.

[13]: # From here, we use the sklearn PCA function, it's much better optimized than our own␣
→˓code.
sys.path.append("../code")
from sklearn.decomposition import PCA
from cad_PCA import reconstruction_demo, reshape_and_rescale

Rescaling is necessary because the eigenvectors are not in [0,255] domain
reconstructed_ims = np.stack([reshape_and_rescale(U[:,i]) for i in range(U.shape[-1])],␣
→˓axis = -1)
axes = plot_series(reconstructed_ims, shape = (5,5), stochastic = False)

ModuleNotFoundError Traceback (most recent call last)
Cell In[13], line 3

1 # From here, we use the sklearn PCA function, it's much better optimized than␣
→˓our own code.

2 sys.path.append("../code")
----> 3 from sklearn.decomposition import PCA

4 from cad_PCA import reconstruction_demo, reshape_and_rescale
6 # Rescaling is necessary because the eigenvectors are not in [0,255] domain

ModuleNotFoundError: No module named 'sklearn'

Second of all, we can use the eigenvectors in the matrix U to reconstruct our images from the transformed dataset
XPCA. We simply multiply the data with U again, because:

XPCA = UTX̂Xrec = UXPCA = UUTX̂ = IX̂ (1.55)

Then we just have to add the mean back to the data (“uncentering” it), and we get back our original dataset X.

X = Xrec + X̄ (1.56)

Just like with the eigenvectors, we can reshape the individual rows of the dataset X back into an image. However, we
can also reconstruct and reshape the images with only a subset of the eigenvectors, so with Ureduced. In the demo below,
we show the resulting images for the first 200 eigenvectors.

[14]: pca = PCA()
pca.fit(X)
reconstruction_demo(X, pca)

NameError Traceback (most recent call last)

(continues on next page)

106 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

Cell In[14], line 1
----> 1 pca = PCA()

2 pca.fit(X)
3 reconstruction_demo(X, pca)

NameError: name 'PCA' is not defined

As you can see, as the number of principle components used to reconstruct the images with increases, the quality of
the images becomes better. This is because we able to utilize more information of the dataset in the reconstruction. In
effect, we observe that each principle component is a linear combination of all features of our dataset.

1.11.3 3. Principal component analysis (exercises)

Exercise 3.1:

Use the following:

generate_gaussian_data(100, [0, 0], [0, 0], [[3, 1],[1, 1]], [[3, 1],[1, 1]])

to generate a dataset with correlated features. Calculate the mean and covariance matrix of the data using
mean and cov and compare them to the parameters you used as input. Write your implementation in the
covariance_matrix_test() function in SECTION 4 of the cad_tests.py module.

[15]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_tests import covariance_matrix_test
X, Y, sigma = covariance_matrix_test()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[15], line 4
from cad_tests import covariance_matrix_test

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

1.11. Topic 2.4: Unsupervised learning, PCA 107

Medical Image Analysis (8DC00), Release v0.1

Question 3.1:

Is there a difference? How could you increase or decrease this difference?

Type your answer here

Exercise 3.2:

Compute the eigenvectors and eigenvalues of the covariance matrix using:

w, v = np.linalg.eig(cov)

(the column v[:,i] is the eigenvector corresponding to the eigenvalue w[i]).

Inspect the eigenvectors and eigenvalues. What two properties can you name about the eigenvectors? How can you
verify these properties (describe the operations, or give a line of Python code). For the eigenvalues, which eigenvalue
is the largest and which is the smallest?

You can sort the eigenvalues and eigenvectors as follows:

ix = np.argsort(w)[::-1] #Find ordering of eigenvalues
w = w[ix] #Reorder eigenvalues
v = v[:, ix] #Reorder eigenvectors

Write your implementation in eigen_vecval_test() in SECTION 4 of the cad_tests.py module.

[16]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_tests import eigen_vecval_test
v, w = eigen_vecval_test(sigma)

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[16], line 4
from cad_tests import eigen_vecval_test

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

108 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Exercise 3.3:

Rotate the data using v in the function rotate_using_eigenvectors_test() in SECTION 4 of the cad_tests.py
module. This is similar to what you did in the registration project, only now instead of getting the angle of rotation, v
is already the rotation matrix.

[17]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_tests import rotate_using_eigenvectors_test
X_rotated = rotate_using_eigenvectors_test(X, Y, v)

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[17], line 4
from cad_tests import rotate_using_eigenvectors_test

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

Question 3.2:

In most literature you will see the notation 𝑣𝑇 *𝑋 , but this will not work on our dataset because of how the dataset is
defined (rows = samples, columns = dimensions). Instead use 𝑋𝑝𝑐𝑎 = 𝑣𝑇 *𝑋𝑇 and 𝑋𝑝𝑐𝑎 = 𝑋𝑇

𝑝𝑐𝑎. What can you say
about the covariance matrix of Xpca?

Type your answer here

Exercise 3.4:

Complete the missing functionality in the function mypca() in SECTION 2 of the cad.py module. Test the function
by running the test_mypca() script located in SECTION 4 of the cad_tests.py module. This will plot the original
data, and the data after test_mypca() is applied. Here is how the result might look:

1.11. Topic 2.4: Unsupervised learning, PCA 109

Medical Image Analysis (8DC00), Release v0.1

[18]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_tests import test_mypca

test_mypca()

Traceback (most recent call last):

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/envs/latest/lib/python3.8/
→˓site-packages/IPython/core/interactiveshell.py:3508 in run_code

exec(code_obj, self.user_global_ns, self.user_ns)

Cell In[18], line 4
from cad_tests import test_mypca

File ../code/cad_tests.py:424
def rotate_using_eigenvectors_test(X, Y, v):
^

IndentationError: expected an indented block

110 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Question 3.3:

You might have noticed when editing mypca() that there is an additional output, fraction_variance. This vector
stores how much variance is accounted for by the first, first two, first three etc principal components. How much variance
is the first principal component responsible for in the Gaussian data you just generated? How would you need to modify
the covariance matrix of the data, in order to decrease the amount of variance in the first principal component? You
can test your hypothesis by modifying the properties of the Gaussian data created at the start of test_mypca().

Note that not any matrix is a valid covariance matrix so if you just enter random numbers you are likely to get an error.
To start, the matrix needs to be symmetric, and the diagonal values need to be positive. Furthermore, the covariance
cannot be large if the variance is small. You can read about how to verify this here: https://math.stackexchange.com/
questions/1522397/how-to-tell-is-a-matrix-is-a-covariance-matrix.

Type your answer here

1.12 Project 2: Computer-aided diagnosis

Contents:

• Goal

• Deliverables

• Assessment

• Guided project work

A. Linear regression for nuclei area measurement

B. Logistic regression for nuclei classification

C. Neural network training for nuclei classification

D. Using k-NN for nuclei classification

E. Reading assignment

References:

[1] Veta M., van Diest P.J., Pluim J.P.W. 2016. Cutting Out the Middleman: Measuring Nuclear Area in Histopathology
Slides Without Segmentation. Medical Image Computing and Computer-Assisted Intervention. LINK

[2] Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A., Tsang, Y. W., Kwak, J. T., & Rajpoot, N. 2019. Hover-net:
Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Medical Image Analysis, 58,
101563. LINK

1.12. Project 2: Computer-aided diagnosis 111

https://math.stackexchange.com/questions/1522397/how-to-tell-is-a-matrix-is-a-covariance-matrix
https://math.stackexchange.com/questions/1522397/how-to-tell-is-a-matrix-is-a-covariance-matrix
https://www.doi.org/10.1007/978-3-319-46723-8_73
https://doi.org/10.1016/j.media.2019.101563

Medical Image Analysis (8DC00), Release v0.1

1.12.1 Goal

Implement and apply linear regression, logistic regression, a neural network and 𝑘-NN for classifying nuclei size in
histopathology images, and evaluate and analyze the results.

The size of the cell nuclei of the tumor in breast cancer patients can be indicative of the outcome. Large nuclei size
indicates more aggressive tumor and in turn worse prognosis for the patient. As part of their routine work, pathologists
make qualitative evaluation of the size of the nuclei by examining the tissue under a microscope. Quantitative mea-
surement (e.g. by manual segmentation) is a much better solution, however, it is unfeasible as it takes additional time
away from the busy pathologists. A solution to this problem is to develop an automatic method for measurement of
nuclei area.

All data required for this mini-project is provided with the code handout. In the exercises, you applied regression and
classification methods on toy datasets, and in the project work you will apply the same methods to a dataset of RGB
images of nuclei with size 24× 24 pixels. The images originate from the dataset that was previously described in Veta
et al. (2015).

1.12.2 Deliverables

There is no hard limit for the length of the report, however, concise and short reports are strongly encouraged. Aim to
present your most important findings in the main body of the report and (if needed) any additional information in an
appendix. The following report structure is suggested for the main body of the report:

1. Introduction

2. Methods

3. Results

4. Discussion

5. Reading assignment (see below)

The introduction and result sections can be very brief in this case (e.g. half a page each). The discussion section should
contain the analysis of the results.

The report must be submitted as a single PDF file. The code must be submitted as a single archive file (e.g. zip) that is
self-contained and can be used to reproduce the results in the report.

Note that there is not a single correct solution for the project. You have to demonstrate to the reader that you understand
the methods that you have studied and can critically analyze the results of applying the methods. Below, you can find
a set of assignments (guided project work) that will help you get started with the project work and when correctly
completed will present you with a minimal solution. Solutions which go beyond these assignments are of course
encouraged.

Code and a report describing your implementation, results and analysis.

1.12.3 Assessment

The rubric that will be used for assessment of the project work is given in this table

[1]: %load_ext autoreload
%autoreload 2

112 Chapter 1. Interactive notebooks

https://github.com/tueimage/8dc00-mia/blob/master/rubric.md

Medical Image Analysis (8DC00), Release v0.1

1.12.4 Guided project work

A. Linear regression for nuclei area measurement

The Python function nuclei_measurement() implements training of a linear regression model for measuring the
area of nuclei in microscopy images. The dataset for this problem consists of small RGB images of size 24 × 24
pixels with a nucleus in the center. Such images can be obtained, for example, by cropping from larger images after
performing a nuclei detection step. The targets are the areas of the nucleus in the center of the image obtained by
manual measurement. The linear regression model that we are going to train will enable us to automatically measure
the size of new, previously unseen samples (without resorting to manual measurement).

The first section of code loads and prepares the dataset. The data is already split into a training and testing set, each
containing more than 20, 000 samples (a validation dataset is not needed as we are not going to perform model selection,
i.e. we are going to stick to linear regression). The last few lines of the first section of code visualize the 300 smallest
and 300 largest nuclei in the training dataset.

In this example, we are not going to perform feature extraction but use the raw pixel values as features. Since each
sample is an RGB image with size 24× 24 pixels, we end up with 24× 24× 3 = 1728 features. Locate the code that
reshapes each image into a feature vector and make sure you understand how it works.

[2]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_project import nuclei_measurement

nuclei_measurement()

NameError Traceback (most recent call last)
Cell In[2], line 6

3 sys.path.append("../code")
4 from cad_project import nuclei_measurement

----> 6 nuclei_measurement()

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/cad_project.py:59, in nuclei_measurement()

57 fig2 = plt.figure(figsize=(16,8))
58 ax1 = fig2.add_subplot(121)

---> 59 line1, = ax1.plot(test_y, predicted_y, ".g", markersize=3)
60 ax1.grid()
61 ax1.set_xlabel('Area')

NameError: name 'predicted_y' is not defined

1.12. Project 2: Computer-aided diagnosis 113

Medical Image Analysis (8DC00), Release v0.1

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

300 smallest nuclei

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

300 largest nuclei

114 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.12. Project 2: Computer-aided diagnosis 115

Medical Image Analysis (8DC00), Release v0.1

Task 1:

Implement the missing functionality for training a linear regression model for automatic measurement of the nuclei
area. Evaluate the performance on the independent test dataset. The next lines of code plot the predicted vs. the actual
area. What is your analysis of the results shown in the plot?

Task 2:

Train a new linear regression model with a reduced number of training samples. Which model results in larger error
on the testing set and why?

B. Logistic regression for nuclei classification

The Python function nuclei_classification() implements the training of a logistic regression model that classifies
nuclei into the classes “large” (class label 𝑦 = 1) and “small” (class label 𝑦 = 0). Examine the code and comments
and make sure that you understand what it does. One notable difference from before is that this code uses the analytical
expression for the gradient of the loss function, instead of computing it numerically with ngradient as before. Using
ngradient will also work, but is much slower. The script is mostly complete. The only missing component is the
values for the parameters of the training process.

[3]: %matplotlib inline
import sys
sys.path.append("../code")
from cad_project import nuclei_classification
from IPython.display import display, clear_output

nuclei_classification()

NameError Traceback (most recent call last)
Cell In[3], line 7

4 from cad_project import nuclei_classification
5 from IPython.display import display, clear_output

----> 7 nuclei_classification()

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/cad_project.py:103, in nuclei_classification()

93 training_x, validation_x, test_x = util.reshape_and_normalize(training_images,␣
→˓validation_images, test_images)

95 ## training linear regression model
96 #---#
97 # TODO: Select values for the learning rate (mu), batch size

(...)
100 # fast training of an accurate model for this classification problem.
101 #---#

--> 103 xx = np.arange(num_iterations)
104 loss = np.empty(*xx.shape)
105 loss[:] = np.nan

(continues on next page)

116 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

NameError: name 'num_iterations' is not defined

Task 3:

1. Select values for the learning rate, batch size and number of iterations (these are sometimes called hyper-
parameters of the model), as well as initial values for the model parameters that will result in fast training of
an accurate model for this classification problem. Note that if you don’t choose the hyper-parameters and initial
parameters well, the resulting loss might be out of range of the plot.

Experiment with a few variations of the parameters and analyze and compare the resulting loss curves. Describe
how the different hyper-parameters influence the training process.

2. Instead of running gradient descent for a fixed number of iterations, can you propose a stopping criterion for the
training?

3. Report the classification accuracy for your best trained model.

4. Reduce the size of the training set by a very large factor (e.g. 0.5% of the original number of samples). Train the
model with this reduced number of samples. Does the model overfit the training dataset? How did you come to
this conclusion?

C. Neural network training for nuclei classification

The code in SECTION 3 of the cad_test.py file, enabled you to train a neural network that classifies whether the
input image contains a large or small nuclei. During the training of this network the hyper parameters (i.e. batch size,
learning rate, number of iterations, . . .) have been kept fixed. However, these parameters can be a crucial factor in
optimizing your model results. Therefore we are going to investigate the effect of these parameters on the loss curve
behaviour and accuracy of the model. To put the improvements in perspective, we are also going to compare these
results to the Logistic Regression model (see Task 4.1).

Task 4:

1. Select values for the learning rate, batch size and number of iterations similar to those used in Task 4. Analyze
and compare the resulting loss curves with the loss curves obtained from the logistic regression. What do you
observe? Also, report the accuracy of the methods you compare. Is there a best one?

2. Now, with a fixed set of hyper parameters, try to change the size of the hidden layer and report the obtained loss
curves. How do the number of parameters of the model influence the loss curve? Can you think of an appropriate
number of parameters for this dataset?

1.12. Project 2: Computer-aided diagnosis 117

Medical Image Analysis (8DC00), Release v0.1

D. Using 𝑘-NN for nuclei classification

In Notebook 2.1 we have introduced the 𝑘-NN algorithm, in Notebook 2.4 the PCA method was introduced. In this
task we would like to combine these two to create a new classifier. How does a clustering algorithm hold up against
the algorithm you have implemented thus far?

Task 5:

1. Use the training set of the cell nuceli data for the 𝑘-NN algorithm. Next, use the test set to classify the images
with this algorithm. How did you choose the parameter 𝑘? What happens to the accuracy when you first use
PCA to reduce the dimensions on the data, how many components do you keep?

2. Report the accuracy, and compare it to the best performing neural network, logistic regression and linear regres-
sion models. What do you see?

E. Reading assignment

In recent literature, various deep learning-based methods have been proposed for cell nuclei segmentation and classi-
fication. In this reading assignment, you are asked to carefully study the paper by Graham et al. (2019).

Task 6:

In a separate section of your project report (~ half a page), compare your own linear (section A) and logistic (section B)
regression-based methods and your small neural network (section C) with the deep neural network proposed by Graham
et al. (2019). Start with giving a brief summary of the method proposed by Graham et al. What are the advantages of
their method, and what are its weak points/disadvantages?

1.13 Active shape models

This (optional) notebook combines theory with exercises to support the understanding of active shape models for object
detection in medical image segmentation. Implement all functions in the code folder of your cloned repository, and
test it in this notebook after implementation. Use available markdown sections to fill in your answers.

Contents:

1. Active shape models

• Using ASMs for segmentation tasks

References:

[1] Active shape models: Cootes et al. Active Shape Models - Their Training and Application, Computer Vision and
Image Understanding (1994)

118 Chapter 1. Interactive notebooks

http://dns2.asia.edu.tw/~ysho/YSHO-English/2000%20Engineering/PDF/Com%20Vis%20Ima%20Und61,%2038.pdf
http://dns2.asia.edu.tw/~ysho/YSHO-English/2000%20Engineering/PDF/Com%20Vis%20Ima%20Und61,%2038.pdf

Medical Image Analysis (8DC00), Release v0.1

[2] Chapter 11.5 of the Guide to Medical Image Analysis by Tonnies, Klaus D

[1]: %load_ext autoreload
%autoreload 2

1.13.1 1. Active shape models

In object detection, model-based vision allows for the recognition and location of known objects or patterns despite
the presence of occlusive phenomena (e.g. noise). But what if the appearance of the object varies? This is where rigid
models become inefficient. Active shape models (ASMs) are statistical models of the shape of objects which iteratively
deform to fit to an example of the object in a new image. Iterative deformation is achieved by active segmentation
preceded by registration of a model to the new image. For a detailed explanation of ASM priciples, please read
carefully the following article: Cootes et al. Active Shape Models - Their Training and Application, Computer Vision
and Image Understanding (1994)

In principle, an ASM aims to find shapes and acceptable variations of an object in a new image based on the model
created from a sufficiently large training dataset. Variations in an active shape from a training phase are used to predict
variation of unknown objects.

An ASM describes a 𝐾-dimensional shape that has 𝐿 boundary points in a shape feature vector s = (𝑠0, 𝑠1, ..., 𝑠𝑁) =
(𝑥1,1𝑥1,2...𝑥1,𝐿, 𝑥2,1𝑥2,2...𝑥2,𝐿, ..., 𝑥𝐾,1, ...𝑥𝐾,𝐿), where 𝑥𝑘,𝑙 denotes the kth component of the lth boundary point x𝑖.

With increasing 𝐾 dimension of the shape feature vector, more samples in the feature space are needed to compute a
reliable estimate.

An ASM is defined by its probability density function (PDF) that reflects deformation within an object class. Compu-
tation of a probabilistic shape model from training samples is typically performed as follows:

1. Identify several points on the object boundary to select landmarks (Note: semantic equivalence of selected land-
marks across all training data needs to be assured)

• primary landmarks are anatomical landmarks equivalent to anatomical locations (e.g. the brain’s Sylvian
fissure)

• secondary landmarks are other image features, e.g. ridge intersections on the brain surface

• tertiary landmarks are used to represent curvature of the shape boundary

2. Align landmarks within a common coordinate system

3. Decorrelate the estimated covariance matrix to obtain uncorrelated features with eigenvectors of that covariance
matrix

4. Clean up the feature space by only keeping significant variations that lie below some percentage of the total
variance in the training data.

As you may correctly anticipate, there are several bottlenecks present in the process of estimating the probabilistic
shape model. Semantic equivalence is often difficult, let alone impossible to determine. Moreover, human interaction
is required for landmark detection, which is rarely feasible in medical practice. Hence, landmark detection is conducted
based on local attributes (e.g. curvatures), geometric shape features or registration of atlases. Moreover, landmark
alignment based on invalid assumptions about the object’s coordinate system may cause wrong shape variation. Last
but not least, the limited amount of training samples typically present in practice leads to a decrease in the significance
of the estimated probability distribution.

Further information about active shape models as well as active appearance models can be found in chapter 11.5 of the
Guide to Medical Image Analysis by Tonnies, Klaus D.

1.13. Active shape models 119

https://www.springer.com/gp/book/9781447160960
http://dns2.asia.edu.tw/~ysho/YSHO-English/2000%20Engineering/PDF/Com%20Vis%20Ima%20Und61,%2038.pdf
http://dns2.asia.edu.tw/~ysho/YSHO-English/2000%20Engineering/PDF/Com%20Vis%20Ima%20Und61,%2038.pdf
https://www.springer.com/gp/book/9781447160960
https://www.springer.com/gp/book/9781447160960

Medical Image Analysis (8DC00), Release v0.1

Using ASMs for segmentation tasks

As mentioned above, most of the issues related to estimating the probability density function of an ASM represent
classification problems. Hence, the ASM approach is suitable for segmentation tasks. The main idea is to apply an ASM
such that its shape is aligned and deformed to fit a potential shape instance in an image. ASM-assisted segmentation is
done in the following steps:

1. Register an active shape model with new image data that contain a shape which is not accounted for in the shape
model in terms of position, orientation and scale

Figure from Toennies K.D. Guide to Medical Image Analysis

2. Apply local deformations of the shape model to fit the object in the target image, thereby creating a new estimate
for computing the next pose estimate (positions of the model shape with deformations)

120 Chapter 1. Interactive notebooks

https://www.springer.com/gp/book/9781447160960/

Medical Image Analysis (8DC00), Release v0.1

Figure from Toennies K.D. Guide to Medical Image Analysis

3. Compute as many pose estimates as are required for convergence.

Exercise 1.1:

In the plot_hand_shapes() function in active_shape_models.py, we start with loading coordinates.txt
which contains coordinates of 40 hand shapes, each represented by 56 points. Dimensions 1 to 56 store the 𝑥-coordinate
and dimensions 57 to 112 store the 𝑦-coordinate. Let’s plot a few shapes to examine the variation. What do you think the
mean shape will look like? Compute it to verify your guess. Implement this functionality in the plot_hand_shapes()
function.

[2]: %matplotlib inline
import sys
sys.path.append("../code")
from active_shape_models import plot_hand_shapes
plot_hand_shapes()

1.13. Active shape models 121

https://www.springer.com/gp/book/9781447160960/

Medical Image Analysis (8DC00), Release v0.1

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
hand_1

0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hand_2

0.2 0.4 0.6 0.8 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

hand_3

0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9
hand_4

Exercise 1.2:

Apply mypca (from the previous exercises on PCA) to the coordinates data. How many dimensions are needed to
describe 98% of the variance? Store only the vectors corresponding to these dimensions in v. Implement your code in
the pca_hands() function of the active_shape_models.py module.

[3]: %matplotlib inline
import sys
import warnings
warnings.filterwarnings('ignore')
sys.path.append("../code")
from active_shape_models import pca_hands
num_dims, v_new, _, _ = pca_hands()
print('Number of dimensions explaining 98% variance: {}'.format(num_dims))
print('Eigenvectors for these dimensions (shape): {}'.format(v_new.shape))

NameError Traceback (most recent call last)
Cell In[3], line 7

5 sys.path.append("../code")
6 from active_shape_models import pca_hands

----> 7 num_dims, v_new, _, _ = pca_hands()
8 print('Number of dimensions explaining 98% variance: {}'.format(num_dims))
9 print('Eigenvectors for these dimensions (shape): {}'.format(v_new.shape))

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/active_shape_models.py:53, in pca_hands()

47 coordinates = np.loadtxt(fn)
48 #--#
49 # TODO: Apply PCA to the coordinates data.
50 #--#
51 # Note: this function also needs to return the eigenvectors v and the
52 # eigenvalues w (you will need these in the next exercise)

---> 53 return num_dims, v_new, v, w

NameError: name 'num_dims' is not defined

122 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

Exercise 1.3:

Create a loop in the test_remaining_variance() function of the active_shape_models.pymodule to go through
the dimensions left in v and compute a variation that this dimension produces. For the weight, you might want to use
the corresponding eigenvalue multiplied by a small scaling factor, like 5. What is the main variation that you notice?

Note: If you see the warning ComplexWarning: Casting complex values to real discards the imaginary part, just
ignore it.

[4]: %matplotlib inline
import sys
sys.path.append("../code")
from active_shape_models import test_remaining_variance
test_remaining_variance()

NameError Traceback (most recent call last)
Cell In[4], line 5

3 sys.path.append("../code")
4 from active_shape_models import test_remaining_variance

----> 5 test_remaining_variance()

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/active_shape_models.py:60, in test_remaining_variance()

58 coordinates = np.loadtxt(fn)
59 mn = np.mean(coordinates, axis=0)

---> 60 num_dims, v_new, v, w = pca_hands()
62 fig = plt.figure(figsize=(15,10))

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/active_shape_models.py:53, in pca_hands()

47 coordinates = np.loadtxt(fn)
48 #--#
49 # TODO: Apply PCA to the coordinates data.
50 #--#
51 # Note: this function also needs to return the eigenvectors v and the
52 # eigenvalues w (you will need these in the next exercise)

---> 53 return num_dims, v_new, v, w

NameError: name 'num_dims' is not defined

1.13. Active shape models 123

Medical Image Analysis (8DC00), Release v0.1

Exercise 1.4:

Let’s load the image test001.jpg from the dataset_hands folder, and view it in grayscale. If you were to plot the
hand template on top of this image, what do you expect to happen? Verify your hypothesis. Implement your code in
the plot_hand_grayscale() function of the active_shape_models.py module.

[5]: %matplotlib inline
import sys
sys.path.append("../code")
from active_shape_models import plot_hand_grayscale
plot_hand_grayscale()

0 100 200 300 400 500 600 700

0

100

200

300

400

0 100 200 300 400 500 600 700

0

100

200

300

400

Exercise 1.5:

Let’s transform your mean hand shape into a 2x56 dataset with initialpos = [[meanhand[0,:56]],
[meanhand[0,56:112]]]. Think about the registration exercises you did before. Define a transformation matrix
(you can try out yourself what numbers are needed) and use it to plot the hand template close to the hand in the image.
Implement your code in the test_transformed_hand() function of the active_shape_models.py module.

[6]: %matplotlib inline
import sys
sys.path.append("../code")
from active_shape_models import test_transformed_hand
test_transformed_hand()

NameError Traceback (most recent call last)
Cell In[6], line 5

3 sys.path.append("../code")
4 from active_shape_models import test_transformed_hand

----> 5 test_transformed_hand()

File ~/checkouts/readthedocs.org/user_builds/8dc00-mia-docs/checkouts/latest/docs/source/
→˓code/active_shape_models.py:111, in test_transformed_hand()
109 ax2 = fig.add_subplot(122)
110 ax2.imshow(img2, cmap='gray')

(continues on next page)

124 Chapter 1. Interactive notebooks

Medical Image Analysis (8DC00), Release v0.1

(continued from previous page)

--> 111 ax2.plot(shape_t[0,:], shape_t[1,:], 'r')

NameError: name 'shape_t' is not defined

0 100 200 300 400 500 600 700

0

100

200

300

400

Question 1.1:

Consider an active shape model for segmentation of the ventricles in the sample brain images. Describe which steps
you would need to do for the data that is available to us, to train a shape model of the ventricles.

Type your answer here

1.13. Active shape models 125

Medical Image Analysis (8DC00), Release v0.1

Exercise 1.6:

You can inspect the mask of the ventricles in the sample brain images using the code below.

[7]: %matplotlib inline
import sys
import matplotlib.pyplot as plt
sys.path.append("../code")
GT = plt.imread('../data/dataset_brains/1_1_gt.tif')
gtMask = GT == 4
fig = plt.figure(figsize=(10,10))
ax1 = fig.add_subplot(121)
ax1.imshow(GT)
ax2 = fig.add_subplot(122)
ax2.imshow(gtMask)

[7]: <matplotlib.image.AxesImage at 0x7fd45b81a6d0>

0 50 100 150 200

0

50

100

150

200

0 50 100 150 200

0

50

100

150

200

Question 1.2:

Look at the ventricle masks for different subjects and different slices. Based on the shapes that you see, what difficulties
do you think you might face, if you wanted to train an active shape model? How could you modify the dataset to
overcome these difficulties?

Type your answer here

126 Chapter 1. Interactive notebooks

	Interactive notebooks
	Help for Jupyter and Python
	1 Python programming skills
	1.1 Python installation and configuration
	1.2 Using Python terminal, setting up a Python environment
	1.3 Implementation of basic engineering and mathematical techniques
	1.4 How to efficiently search for solutions to Python errors

	2. Jupyter notebook workflow
	2.1 General information about notebooks
	Getting started with Jupyter
	Digital reader
	Code and data repository structure
	Exercises on image registration
	Exercises on computer-aided diagnostics and neural networks
	Notation
	Activity icons

	2.2 User interface and useful commands in Jupyter notebooks
	2.3 Debugging and editing your Python code directly in Jupyter notebook
	Cell execution history
	Autoreload
	%debug and the IPython debugger
	JupyterLab extensions

	Topic 1.1: Geometrical transformations
	1. Review of linear algebra
	Scalars
	Vectors
	Matrices
	Matrix (Dot) Product
	Matrix transpose
	Identity matrix
	Matrix inversion
	Special matrices and vectors
	Systems of equations
	Norms
	Determinant

	2. Introduction to (medical) image registration
	Applications of registration
	Classification of registration methods
	Causes of medical image misalignment

	3. Geometrical transformations (theory and exercises)
	3.1 Rigid transformations
	Translation
	Rotation

	3.2 Nonrigid transformations
	Scaling
	Reflection
	Shearing
	Exercise 3.2.1:
	Question 3.2.1:
	Question 3.2.2:

	3.3 Transform composition
	Question 3.3.1:
	Question 3.3.2:
	Exercise 3.3.1:

	3.4 Homogeneous coordinates
	Exercise 3.4.1:
	Exercise 3.4.2:
	Question 3.4.1:

	Topic 1.2: Point-based registration
	1. Point-based registration (theory)
	Optimization
	Question 1.1:
	Question 1.2:
	Evaluation of image registration accuracy
	Question 1.3:

	2. Point-based transformations (theory and exercises)
	2.1 Inverse mapping
	Question 2.1.1:
	Exercise 2.1.1:
	2.2 Least-squares solution to an overdetermined system of linear equations
	Exercise 2.2.1:
	Question 2.2.1:
	2.3 Least-squares fitting of an affine transformation
	Exercise 2.3.1:

	Topic 1.3: Image similarity metrics
	1. Probability theory
	Random variables
	Probability mass function (a.k.a probability distribution table)
	Probability density function
	Bayes’ rule

	2. Image similarity metrics
	Question 2.1:
	2.0 Sum of square differences
	2.1. Normalized cross-correlation
	Exercise 2.1.1:
	Exercise 2.1.2:
	Question 2.1.1:
	2.2. Joint histogram
	Exercise 2.2.1:
	Question 2.2.1:
	2.3 Mutual Information
	Exercise 2.3.1:
	Exercise 2.3.2:
	Exercise 2.3.3:
	Question 2.3.1:
	Question 2.3.2:

	Topic 1.4: Intensity-based registration
	1. Intensity-based registration
	2. Optimization for intensity-based registration
	Gradient ascent / descent:

	3. Intensity-based image registration (exercises)
	3.1 Numerical differentiation
	Exercise 3.1.1:
	Exercise 3.1.2:
	Question 3.1.1:
	3.2 Similarity as a function of image transformation
	Question 3.2.1:
	Exercise 3.2.1:
	3.3 Similarity as a function of rotation
	Exercise 3.3.1:
	Question 3.3.1:

	Topic 1.5: Validation in medical image analysis
	1. Validation (concepts)
	1.1 Quality characteristics
	Accuracy (bias)
	Precision (variation), reproducibility, reliability, replicability
	Robustness
	Efficiency
	Fault detection

	1.2 Ground truth
	Ground truth from real data
	Ground truth from phantoms
	Data representativeness
	Statistical significance

	1.3 Measures of quality
	Segmentation - quality measures
	Registration - quality measures
	(Computer-aided) detection - quality measures

	2. Common limitations of performance metrics used for segmentation tasks
	Small structures
	Image artifacts
	Overlap measurements
	Over- and undersegmentation
	Single object bias
	Metric combination
	Choosing the right metric for a given task

	Question 1:
	Question 2:
	Question 3:
	Question 4:

	Project 1: Image registration
	Goal
	Deliverables
	Assessment
	Guided project work
	A. Getting started
	Dataset
	Question 1:
	Selecting corresponding point pairs
	Task 1:

	B. Point-based registration
	Point-based affine image registration
	Evaluation of point-based affine image registration
	Question 2:

	C. Intensity-based registration
	Comparing the results of different registration methods
	Task 2:

	Topic 2.1: Linear regression
	1. Linear regression (theory)
	2. Implementing linear regression
	Question 2.1:
	Exercise 2.1:
	Exercise 2.2:

	3. Polynomial regression and model selection
	Exercise 3.1:
	Question 3.1:
	Question 3.2:

	4. Nearest neighbor classifier

	Topic 2.2: Logistic regression
	1. Logistic regression (theory)
	2. Implementing the components of logistic regression
	Exercise 2.1:
	Exercise 2.2:
	Question 2.1:

	3. Implementing logistic regression
	Exercise 3.1:
	Question 3.1:
	Question 3.2:
	Question 3.3:
	Question 3.4:

	4. Generalization and overfitting

	Topic 2.3: Building blocks of neural networks
	1. Learning process of a neural network
	2. Backpropagation
	Simple neural network
	Training set
	Model initialization
	Training & loss function
	Exercise 2.1:
	Learning rate
	Exercise 2.2:
	Question 2.1:
	Question 2.2:
	Following model training
	Exercise 2.3:
	Question 2.3:

	3. Neural network implementation
	Project computer-aided diagnosis (CAD)
	Data loading & preprocessing
	Exercise 3.1:
	Define initialization values
	Question 3.1:
	Exercise 3.2:
	Model functions
	Activation function
	Loss function

	Forward and backward pass
	Exercise 3.3:
	Model training & validation
	Exercise 3.4:
	Question 3.2:
	Final model performance
	Question 3.3:

	Topic 2.4: Unsupervised learning, PCA
	1. Supervised vs. unsupervised learning
	2. Principal component analysis (theory)
	2.1 Motivation
	Curse of dimensionality
	2.2 Basics of PCA
	Mathematical background
	2.3 Dimensionality reduction using PCA
	A graphical example: cell nuclei
	2.4 Intuitive interpretations of principle components

	3. Principal component analysis (exercises)
	Exercise 3.1:
	Question 3.1:
	Exercise 3.2:
	Exercise 3.3:
	Question 3.2:
	Exercise 3.4:
	Question 3.3:

	Project 2: Computer-aided diagnosis
	Goal
	Deliverables
	Assessment
	Guided project work
	A. Linear regression for nuclei area measurement
	Task 1:
	Task 2:
	B. Logistic regression for nuclei classification
	Task 3:
	C. Neural network training for nuclei classification
	Task 4:
	D. Using k-NN for nuclei classification
	Task 5:
	E. Reading assignment
	Task 6:

	Active shape models
	1. Active shape models
	Using ASMs for segmentation tasks
	Exercise 1.1:
	Exercise 1.2:
	Exercise 1.3:
	Exercise 1.4:
	Exercise 1.5:
	Question 1.1:
	Exercise 1.6:
	Question 1.2:

